Page 162 - Read Online
P. 162

Page 8 of 10                                                     Purkait et al. Vessel Plus 2018;2:19  I  http://dx.doi.org/10.20517/2574-1209.2018.16

               Ethical approval and consent to participate
               Ethical committee clearance was obtained from the respective medical institutions and Ethical committee
               of the Anthropological Survey of India, Government of India. Verbal and written well informed consent was
               obtained from all participants before they were eligible for recruitment into the study.

               Consent for publication
               Although the manuscript does not involve the use of live photographs of any of the participants, consent was
               obtained from them for the data to be published as at the time recruitment into the study.


               Copyright
               © The Author(s) 2018.



               REFERENCES
               1.   Ruggenenti P, Craverdi P, Remuzzi G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nature Rev Nephrol 2010;
                   6:319-30.
               2.   Chawla T, Sharma D, Sing A. Role of renin angiotensin system in diabetic nephropathy. World J Diabetes 2010;1:141-5.
               3.   Dunlop M. Aldose reductase and the role of polyol pathway in diabetic nephropathy. Kidney Int Suppl 2000;77:S3-12.
               4.   Noh H, King GL. The role of protein kinase C activation in diabetic nephropathy. Kidney Int Suppl  2007;(106):S49-53.
               5.   Forbes JM, Cooper ME, Oldfield MD, Thomas MC. Role of advanced glycation end products in diabetic nephropathy. J Am Soc
                   Nephrol 2003;14:S254-8.
               6.   Buse MG. Hexosamines, insulin resistance and complications of diabetes: current status. Am J Physiol Endocrinol Metab 2006;290:E1-8.
               7.   Schleicher ED, Weigert C. Role of hexosamine biosynthetic pathwayin diabetic nephropathy. Kidney Int Suppl 2000;77:S13-8.
               8.   Ruggenenti P, Bettinaglio P, Pinares F, Remuzzi G. Angiotensin converting enzyme insertion/deletion polymorphism and renoprotection
                   in diabetic and nondiabetic nephropathies. Clin J Am Soc Nephrol 2008;3:1511-25.
               9.   Wang F, Fang Q, Yu N, Zhao D, Zhang Y, Wang J, Wang Q, Zhou X, Cao X, Fan X. Association between genetic polymorphism of the
                   angiotensin converting enzyme and diabetic nephropathy: a meta-analysis comprising 26,580 subjects. J Renin Angiotensin Aldosterone
                   Syst 2012;13:161-74.
               10.  Rahimi Z, Hasanvand A, Felehgari V. Interaction of MTHFR 1298C with ACE D allele augments the risk of diabetic nephropathy in
                   Western Iran. DNA Cell Biol 31;553-9.
               11.  Imai T, Miyazaki H, Hirose S, Hori H, Hayashi T, Kageyama R, Ohkubo H, Nakanishi S, Murakami K. Cloning and sequence analysis
                   of cDNA for human renin precursor. Proc Natl Acad Sci U S A 1983;80:7405-9.
               12.  Hsueh WA, Baxter JD. Human prorenin. Hypertension 1991;17:469-77.
               13.  Morales R, Watier Y, Böcskei Z. Human prorenin structure sheds light on a novel mechanism of its autoinhibition and on its non-
                   proteolytic activation by the pro(renin) receptor. J Mol Biol 2012;421:100-11.
               14.  Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical renin-angiotensin system in kidney physiology. Compr
                   Physiol 2014;4:1201-28.
               15.  McGill JR, Chirgwin JM, Moore CM, McCombs JL. Chromosome localization of the human renin gene (REN) by in situ hybridization.
                   Cytogenet Cell Genet 1987;45:55-7.
               16.  Hobart PM, Fogliano M, O’Connor BA, Schaefer IM, Chirgwin JM. Human renin gene: structure and sequence analysis. Proc Natl
                   Acad Sci U S A 1984;81:5026-30.
               17.  Cohen-Haguenauer O, Soubrier F, Van Cong N, Serero S, Turleau C, Jegou C, Gross MS, Corvol P, Frézal J. Regional mapping of the
                   human renin gene to 1q32 by in situ hybridization. Ann Genet 1989;32:16-20.
               18.  Navar LG, Nishiyama A. Intrarenal formation of angiotensin II. Contrib Nephrol 2001;(135):1-15.
               19.  Ichihara A, Kobori H, Nishiyama A, Navar LG. Renal renin-angiotensin system. Contrib Nephrol 2004;143:117-30.
               20.  Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev 2006;86:747-803.
               21.  Schweda F, Kurtz A. Cellular mechanism of renin release. Acta Physiol Scand 2004;181:383-90.
               22.  Navar LG. The kidney is blood pressure regulation and development of hypertension. Med Clin North Am 1997;81:1165-98.
               23.  Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD. Angiotensin II
                   receptors and angiotensin II receptor antagonists. Pharmacol Rev 1993;45:205-51.
               24.  Moore N, Dicker P, O’Brien JK, Stojanovic M, Conroy RM, Treumann A, O’Brien ET, Fitzgerald D, Shields D, Stanton AV. Renin gene
                   polymorphisms and haplotypes, blood pressure, and responses to renin-angiotensin system inhibition. Hypertension 2007;50:340-7.
               25.  Mansego ML, Redon J, Marin R, González-Albert V, Martin-Escudero JC, Fabia MJ, Martinez F, Chaves FJ. Renin polymorphisms and
                   haplotypes are associated with blood pressure levels and hypertension risk in postmenopausal women. J Hypertens 2008;26:230-7.
               26.  Ahmad U, Saleheen D, Bokhari A, Frossard PM. Strong association of a renin intronic dimorphism with essential hypertension.
                   Hypertens Res 2005;28:339-44.
               27.  Frossard PM1, Malloy MJ, Lestringant GG, Kane JP. Haplotypes of the human renin gene associated with essential hypertension and
                   stroke. J Hum Hypertens 2001;15:49-55.
   157   158   159   160   161   162   163   164   165   166   167