Page 14 - Read Online
P. 14

Finetti et al. Vessel Plus 2021;5:29  https://dx.doi.org/10.20517/2574-1209.2021.49  Page 9 of 9

               30.      Rath M, Pagenstecher A, Hoischen A, Felbor U. Postzygotic mosaicism in cerebral cavernous malformation. J Med Genet
                   2020;57:212-6.  DOI  PubMed  PMC
               31.      Gault J, Awad IA, Recksiek P, et al. Cerebral cavernous malformations: somatic mutations in vascular endothelial cells. Neurosurgery
                   2009;65:138-44; discussion 144.  DOI  PubMed  PMC
               32.      Pagenstecher A, Stahl S, Sure U, Felbor U. A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of
                   CCM1, CCM2 or CCM3 in affected endothelial cells. Hum Mol Genet 2009;18:911-8.  DOI  PubMed  PMC
               33.      Detter MR, Snellings DA, Marchuk DA. Cerebral cavernous malformations develop through clonal expansion of mutant endothelial
                   cells. Circ Res 2018;123:1143-51.  DOI  PubMed  PMC
               34.      Malinverno M, Maderna C, Abu Taha A, et al. Endothelial cell clonal expansion in the development of cerebral cavernous
                   malformations. Nat Commun 2019;10:2761.  DOI  PubMed  PMC
               35.      Louvi A, Chen L, Two AM, Zhang H, Min W, Günel M. Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to
                   CCM and vascular pathology. Proc Natl Acad Sci U S A 2011;108:3737-42.  DOI  PubMed  PMC
               36.      Wang K, Zhang H, He Y, et al. Mural cell-specific deletion of cerebral cavernous malformation 3 in the brain induces cerebral
                   cavernous malformations. Arterioscler Thromb Vasc Biol 2020;40:2171-86.  DOI  PubMed
               37.      Lopez-Ramirez MA, Soliman SI, Hale P, et al. Non cell-autonomous effect of astrocytes on cerebral cavernous malformations. BioRxiv
                   2021.  DOI
               38.      Finetti F, Schiavo I, Ercoli J, et al. KRIT1 loss-mediated upregulation of NOX1 in stromal cells promotes paracrine pro-angiogenic
                   responses. Cell Signal 2020;68:109527.  DOI  PubMed
               39.      Chapman EM, Lant B, Ohashi Y, et al. A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc
                   homeostasis. Nat Commun 2019;10:1791.  DOI  PubMed  PMC
               40.      Wüstehube J, Bartol A, Liebler SS, et al. Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating
                   DELTA-NOTCH signaling. Proc Natl Acad Sci U S A 2010;107:12640-5.  DOI  PubMed  PMC
               41.      DiStefano PV, Kuebel JM, Sarelius IH, Glading AJ. KRIT1 protein depletion modifies endothelial cell behavior via increased vascular
                   endothelial growth factor (VEGF) signaling. J Biol Chem 2014;289:33054-65.  DOI  PubMed  PMC
               42.      Baev NI, Awad IA. Endothelial cell culture from human cerebral cavernous malformations. Stroke 1998;29:2426-34.  DOI  PubMed
               43.      Zhao Y, Tan YZ, Zhou LF, Wang HJ, Mao Y. Morphological observation and in vitro angiogenesis assay of endothelial cells isolated
                   from human cerebral cavernous malformations. Stroke 2007;38:1313-9.  DOI  PubMed
               44.      Glading AJ, Finetti F, Trabalzini L. Disease models in cerebral cavernous malformations. Drug Discov Today Dis Model 2020;31:21-
                   9.  DOI  PubMed  PMC
               45.      Wang K, Zhou HJ, Wang M. CCM3 and cerebral cavernous malformation disease. Stroke Vasc Neurol 2019;4:67-70.  DOI  PubMed
                   PMC
               46.      Jenny Zhou H, Qin L, Zhang H, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral
                   cavernous malformation. Nat Med 2016;22:1033-42.  DOI  PubMed  PMC
               47.      Sartages M, Floridia E, García-Colomer M, et al. High levels of receptor tyrosine kinases in ccm3-deficient cells increase their
                   susceptibility to tyrosine kinase inhibition. Biomedicines 2020;8:624.  DOI  PubMed  PMC
               48.      DiStefano PV, Glading AJ. VEGF signalling enhances lesion burden in KRIT1 deficient mice. J Cell Mol Med 2020;24:632-9.  DOI
                   PubMed  PMC
               49.      Schulz GB, Wieland E, Wüstehube-Lausch J, et al. Cerebral cavernous malformation-1 protein controls DLL4-Notch3 signaling
                   between the endothelium and pericytes. Stroke 2015;46:1337-43.  DOI  PubMed
               50.      You C, Zhao K, Dammann P, et al. EphB4 forward signalling mediates angiogenesis caused by CCM3/PDCD10-ablation. J Cell Mol
                   Med 2017;21:1848-58.  DOI  PubMed  PMC
               51.      Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY. Ccm1 is required for arterial morphogenesis: implications for the
                   etiology of human cavernous malformations. Development 2004;131:1437-48.  DOI  PubMed
               52.      Bravi L, Malinverno M, Pisati F, et al. Endothelial cells lining sporadic cerebral cavernous malformation cavernomas undergo
                   endothelial-to-mesenchymal transition. Stroke 2016;47:886-90.  DOI  PubMed
               53.      Dejana E, Hirschi KK, Simons M. The molecular basis of endothelial cell plasticity. Nat Commun 2017;8:14361.  DOI  PubMed  PMC
               54.      Fisher OS, Liu W, Zhang R, et al. Structural basis for the disruption of the cerebral cavernous malformations 2 (CCM2) interaction
                   with Krev interaction trapped 1 (KRIT1) by disease-associated mutations. J Biol Chem 2015;290:2842-53.  DOI  PubMed  PMC
               55.      Cullere X, Plovie E, Bennett PM, MacRae CA, Mayadas TN. The cerebral cavernous malformation proteins CCM2L and CCM2
                   prevent the activation of the MAP kinase MEKK3. Proc Natl Acad Sci U S A 2015;112:14284-9.  DOI  PubMed  PMC
               56.      Lopez-Ramirez MA, Pham A, Girard R, et al. Cerebral cavernous malformations form an anticoagulant vascular domain in humans
                   and mice. Blood 2019;133:193-204.  DOI  PubMed  PMC
   9   10   11   12   13   14   15   16   17   18   19