Page 14 - Read Online
P. 14
Finetti et al. Vessel Plus 2021;5:29 https://dx.doi.org/10.20517/2574-1209.2021.49 Page 9 of 9
30. Rath M, Pagenstecher A, Hoischen A, Felbor U. Postzygotic mosaicism in cerebral cavernous malformation. J Med Genet
2020;57:212-6. DOI PubMed PMC
31. Gault J, Awad IA, Recksiek P, et al. Cerebral cavernous malformations: somatic mutations in vascular endothelial cells. Neurosurgery
2009;65:138-44; discussion 144. DOI PubMed PMC
32. Pagenstecher A, Stahl S, Sure U, Felbor U. A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of
CCM1, CCM2 or CCM3 in affected endothelial cells. Hum Mol Genet 2009;18:911-8. DOI PubMed PMC
33. Detter MR, Snellings DA, Marchuk DA. Cerebral cavernous malformations develop through clonal expansion of mutant endothelial
cells. Circ Res 2018;123:1143-51. DOI PubMed PMC
34. Malinverno M, Maderna C, Abu Taha A, et al. Endothelial cell clonal expansion in the development of cerebral cavernous
malformations. Nat Commun 2019;10:2761. DOI PubMed PMC
35. Louvi A, Chen L, Two AM, Zhang H, Min W, Günel M. Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to
CCM and vascular pathology. Proc Natl Acad Sci U S A 2011;108:3737-42. DOI PubMed PMC
36. Wang K, Zhang H, He Y, et al. Mural cell-specific deletion of cerebral cavernous malformation 3 in the brain induces cerebral
cavernous malformations. Arterioscler Thromb Vasc Biol 2020;40:2171-86. DOI PubMed
37. Lopez-Ramirez MA, Soliman SI, Hale P, et al. Non cell-autonomous effect of astrocytes on cerebral cavernous malformations. BioRxiv
2021. DOI
38. Finetti F, Schiavo I, Ercoli J, et al. KRIT1 loss-mediated upregulation of NOX1 in stromal cells promotes paracrine pro-angiogenic
responses. Cell Signal 2020;68:109527. DOI PubMed
39. Chapman EM, Lant B, Ohashi Y, et al. A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc
homeostasis. Nat Commun 2019;10:1791. DOI PubMed PMC
40. Wüstehube J, Bartol A, Liebler SS, et al. Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating
DELTA-NOTCH signaling. Proc Natl Acad Sci U S A 2010;107:12640-5. DOI PubMed PMC
41. DiStefano PV, Kuebel JM, Sarelius IH, Glading AJ. KRIT1 protein depletion modifies endothelial cell behavior via increased vascular
endothelial growth factor (VEGF) signaling. J Biol Chem 2014;289:33054-65. DOI PubMed PMC
42. Baev NI, Awad IA. Endothelial cell culture from human cerebral cavernous malformations. Stroke 1998;29:2426-34. DOI PubMed
43. Zhao Y, Tan YZ, Zhou LF, Wang HJ, Mao Y. Morphological observation and in vitro angiogenesis assay of endothelial cells isolated
from human cerebral cavernous malformations. Stroke 2007;38:1313-9. DOI PubMed
44. Glading AJ, Finetti F, Trabalzini L. Disease models in cerebral cavernous malformations. Drug Discov Today Dis Model 2020;31:21-
9. DOI PubMed PMC
45. Wang K, Zhou HJ, Wang M. CCM3 and cerebral cavernous malformation disease. Stroke Vasc Neurol 2019;4:67-70. DOI PubMed
PMC
46. Jenny Zhou H, Qin L, Zhang H, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral
cavernous malformation. Nat Med 2016;22:1033-42. DOI PubMed PMC
47. Sartages M, Floridia E, García-Colomer M, et al. High levels of receptor tyrosine kinases in ccm3-deficient cells increase their
susceptibility to tyrosine kinase inhibition. Biomedicines 2020;8:624. DOI PubMed PMC
48. DiStefano PV, Glading AJ. VEGF signalling enhances lesion burden in KRIT1 deficient mice. J Cell Mol Med 2020;24:632-9. DOI
PubMed PMC
49. Schulz GB, Wieland E, Wüstehube-Lausch J, et al. Cerebral cavernous malformation-1 protein controls DLL4-Notch3 signaling
between the endothelium and pericytes. Stroke 2015;46:1337-43. DOI PubMed
50. You C, Zhao K, Dammann P, et al. EphB4 forward signalling mediates angiogenesis caused by CCM3/PDCD10-ablation. J Cell Mol
Med 2017;21:1848-58. DOI PubMed PMC
51. Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY. Ccm1 is required for arterial morphogenesis: implications for the
etiology of human cavernous malformations. Development 2004;131:1437-48. DOI PubMed
52. Bravi L, Malinverno M, Pisati F, et al. Endothelial cells lining sporadic cerebral cavernous malformation cavernomas undergo
endothelial-to-mesenchymal transition. Stroke 2016;47:886-90. DOI PubMed
53. Dejana E, Hirschi KK, Simons M. The molecular basis of endothelial cell plasticity. Nat Commun 2017;8:14361. DOI PubMed PMC
54. Fisher OS, Liu W, Zhang R, et al. Structural basis for the disruption of the cerebral cavernous malformations 2 (CCM2) interaction
with Krev interaction trapped 1 (KRIT1) by disease-associated mutations. J Biol Chem 2015;290:2842-53. DOI PubMed PMC
55. Cullere X, Plovie E, Bennett PM, MacRae CA, Mayadas TN. The cerebral cavernous malformation proteins CCM2L and CCM2
prevent the activation of the MAP kinase MEKK3. Proc Natl Acad Sci U S A 2015;112:14284-9. DOI PubMed PMC
56. Lopez-Ramirez MA, Pham A, Girard R, et al. Cerebral cavernous malformations form an anticoagulant vascular domain in humans
and mice. Blood 2019;133:193-204. DOI PubMed PMC