Page 13 - Read Online
P. 13
Page 8 of 9 Finetti et al. Vessel Plus 2021;5:29 https://dx.doi.org/10.20517/2574-1209.2021.49
REFERENCES
1. Wong JH, Awad IA, Kim JH. Ultrastructural pathological features of cerebrovascular malformations: a preliminary report.
Neurosurgery 2000;46:1454-9. DOI PubMed
2. Padarti A, Zhang J. Recent advances in cerebral cavernous malformation research. Vessel Plus 2018;2:21. DOI PubMed PMC
3. Awad IA, Polster SP. Cavernous angiomas: deconstructing a neurosurgical disease. J Neurosurg 2019;131:1-13. DOI PubMed PMC
4. Xie MG, Li D, Guo FZ, et al. Brainstem cavernous malformations: surgical indications based on natural history and surgical outcomes.
World Neurosurg 2018;110:55-63. DOI PubMed
5. Flemming KD, Graff-Radford J, Aakre J, et al. Population-based prevalence of cerebral cavernous malformations in older adults:
Mayo Clinic Study of Aging. JAMA Neurol 2017;74:801-5. DOI PubMed PMC
6. Flemming KD, Lanzino G. Cerebral cavernous malformation: what a practicing clinician should know. Mayo Clin Proc 2020;95:2005-
20. DOI PubMed
7. Zabramski JM, Wascher TM, Spetzler RF, et al. The natural history of familial cavernous malformations: results of an ongoing study.
J Neurosurg 1994;80:422-32. DOI PubMed
8. Spiegler S, Rath M, Paperlein C, Felbor U. Cerebral cavernous malformations: an update on prevalence, molecular genetic analyses,
and genetic counselling. Mol Syndromol 2018;9:60-9. DOI PubMed PMC
9. Denier C, Labauge P, Bergametti F, et al; Société Française de Neurochirurgie. Genotype-phenotype correlations in cerebral cavernous
malformations patients. Ann Neurol 2006;60:550-6. DOI PubMed
10. Riant F, Cecillon M, Saugier-Veber P, Tournier-Lasserve E. CCM molecular screening in a diagnosis context: novel unclassified
variants leading to abnormal splicing and importance of large deletions. Neurogenetics 2013;14:133-41. DOI PubMed
11. Akers A, Al-Shahi Salman R, A Awad I, et al. Synopsis of guidelines for the clinical management of cerebral cavernous
malformations: consensus recommendations based on systematic literature review by the angioma alliance scientific advisory board
clinical experts panel. Neurosurgery 2017;80:665-80. DOI PubMed PMC
12. Su VL, Calderwood DA. Signalling through cerebral cavernous malformation protein networks. Open Biol 2020;10:200263. DOI
PubMed PMC
13. Retta SF, Glading AJ. Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: two sides of the
same coin. Int J Biochem Cell Biol 2016;81:254-70. DOI PubMed PMC
14. Retta SF, Perrelli A, Trabalzini L, Finetti F. From genes and mechanisms to molecular-targeted therapies: the long climb to the cure of
cerebral cavernous malformation (CCM) disease. Methods Mol Biol 2020;2152:3-25. DOI PubMed
15. Maddaluno L, Rudini N, Cuttano R, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations.
Nature 2013;498:492-6. DOI PubMed
16. Zhou Z, Tang AT, Wong WY, et al. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling.
Nature 2016;532:122-6. DOI PubMed PMC
17. Lopez-Ramirez MA, Fonseca G, Zeineddine HA, et al. Thrombospondin1 (TSP1) replacement prevents cerebral cavernous
malformations. J Exp Med 2017;214:3331-46. DOI PubMed PMC
18. Zhou Z, Rawnsley DR, Goddard LM, et al. The cerebral cavernous malformation pathway controls cardiac development via regulation
of endocardial MEKK3 signaling and KLF expression. Dev Cell 2015;32:168-80. DOI PubMed PMC
19. Glading A, Han J, Stockton RA, Ginsberg MH. KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions. J Cell
Biol 2007;179:247-54. DOI PubMed PMC
20. Glading AJ, Ginsberg MH. Rap1 and its effector KRIT1/CCM1 regulate beta-catenin signaling. Dis Model Mech 2010;3:73-83. DOI
PubMed PMC
21. Antognelli C, Trapani E, Delle Monache S, et al. KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that
sensitizes cells to oxidative stress: Implication for Cerebral Cavernous Malformation disease. Free Radic Biol Med 2018;115:202-18.
DOI PubMed PMC
22. Goitre L, DiStefano PV, Moglia A, et al. Up-regulation of NADPH oxidase-mediated redox signaling contributes to the loss of barrier
function in KRIT1 deficient endothelium. Sci Rep 2017;7:8296. DOI PubMed PMC
23. Goitre L, De Luca E, Braggion S, et al. KRIT1 loss of function causes a ROS-dependent upregulation of c-Jun. Free Radic Biol Med
2014;68:134-47. DOI PubMed PMC
24. Chohan MO, Marchiò S, Morrison LA, et al. Emerging pharmacologic targets in cerebral cavernous malformation and potential
strategies to alter the natural history of a difficult disease: a Review. JAMA Neurol 2019;76:492-500. DOI PubMed
25. Gault J, Shenkar R, Recksiek P, Awad IA. Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous
malformation lesion. Stroke 2005;36:872-4. DOI PubMed
26. Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA. Biallelic somatic and germline mutations in cerebral cavernous
malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet 2009;18:919-30. DOI PubMed
PMC
27. McDonald DA, Shi C, Shenkar R, et al. Lesions from patients with sporadic cerebral cavernous malformations harbor somatic
mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet 2014;23:4357-70.
DOI PubMed PMC
28. Riant F, Bergametti F, Ayrignac X, Boulday G, Tournier-Lasserve E. Recent insights into cerebral cavernous malformations: the
molecular genetics of CCM. FEBS J 2010;277:1070-5. DOI PubMed
29. Hutchinson E. Alfred Knudson and his two-hit hypothesis. Lancet Oncol 2001;2:642-5. DOI PubMed