Page 99 - Read Online
P. 99

Page 14 of 16                           Sun et al. Soft Sci. 2025, 5, 35  https://dx.doi.org/10.20517/ss.2025.21

                   absorption at a low filling content. Chem. Eng. J. 2024, 495, 153663.  DOI
               3.       Wei, H.; Li, W.; Bachagha, K. Component optimization and microstructure design of carbon nanotube-based microwave absorbing
                   materials: a review. Carbon 2024, 217, 118651.  DOI
               4.       Wang, J.; Ren, J.; Li, Q.; Liu, Y.; Zhang, Q.; Zhang, B. Synthesis and microwave absorbing properties of N-doped carbon microsphere
                   composites with concavo-convex surface. Carbon 2021, 184, 195-206.  DOI
               5.       Rehman, S. U.; Xu, S.; Li, Z.; et al. Hierarchical-bioinspired MOFs enhanced electromagnetic wave absorption. Small 2024, 20,
                   e2306466.  DOI  PubMed
               6.       Habibpour, S.; Rahimi-Darestani, Y.; Salari, M.; et al. Synergistic layered design of aerogel nanocomposite of graphene nanoribbon/
                   MXene with tunable absorption dominated electromagnetic interference shielding. Small 2024, 20, e2404876.  DOI  PubMed
               7.       Wang, B.; Xu, C.; Duan, G.; Xu, W.; Pi, F. Review of broadband metamaterial absorbers: from principles, design strategies, and
                   tunable properties to functional applications. Adv. Funct. Mater. 2023, 33, 2213818.  DOI
               8.       Wang, X.; Xing, X.; Zhu, H.; Li, J.; Liu, T. State of the art and prospects of Fe O /carbon microwave absorbing composites from the
                                                                       3
                                                                        4
                   dimension and structure perspective. Adv. Colloid. Interface. Sci. 2023, 318, 102960.  DOI  PubMed
               9.       Zeng, X.; Cheng, X.; Yu, R.; Stucky, G. D. Electromagnetic microwave absorption theory and recent achievements in microwave
                   absorbers. Carbon 2020, 168, 606-23.  DOI
               10.      Abdalla, I.; Elhassan, A.; Ali, S.; et al. Impact of defect-rich carbon nanofibers combined with magnetic materials on broadband
                   electromagnetic wave absorption and radar cross-section reduction. Small. Struct. 2025, 6, 2400624.  DOI
               11.      Cai, L.; Pan, F.; Zhu, X.; et al. Etching engineering and electrostatic self-assembly of N-doped MXene/hollow Co-ZIF hybrids for
                   high-performance microwave absorbers. Chem. Eng. J. 2022, 434, 133865.  DOI
               12.      Zhang, Y.; Zhu, C.; Gao, S. Multi-scale magnetic and electric interaction in gradient magnetic-dielectric heterostructures with
                   excellent low-frequency electromagnetic wave absorption. Nano. Res. 2025,.  DOI
               13.      An, J.; Zhao, C.; He, Z.; et al. Synthesis and microwave absorption property of nanostructured Ketjen black/Fe O  core/shell particles.
                                                                                           3  4
                   Rare. Met. 2022, 41, 3351-9.  DOI
               14.      Cui, Y.; Yang, K.; Wang, J.; Shah, T.; Zhang, Q.; Zhang, B. Preparation of pleated RGO/MXene/Fe O  microsphere and its absorption
                                                                                    3  4
                   properties for electromagnetic wave. Carbon 2021, 172, 1-14.  DOI
               15.      Song, J.; Jiao, J.; Liu, H.; et al. Effect of surface state of SiC fibers on their interfacial properties. Compos. Commun. 2025, 53, 102232.
                   DOI
               16.      Meng, X.; Liu, Y.; Han, G.; Yang, W.; Yu, Y. Three-dimensional (Fe O /ZnO)@C Double-core@shell porous nanocomposites with
                                                                 3
                                                                   4
                   enhanced broadband microwave absorption. Carbon 2020, 162, 356-64.  DOI
               17.      He, J.; Gao, S.; Zhang, Y.; Zhang, X.; Li, H. N-doped residual carbon from coal gasification fine slag decorated with Fe O
                                                                                                        3  4
                   nanoparticles for electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 104, 98-108.  DOI
               18.      Dong, C.; Li, D.; Wang, H.; et al. CoSe @polythiophene core-shell composites with enhanced interfacial polarization for high-
                                              2
                   performance broadband electromagnetic absorption. Carbon 2023, 215, 118459.  DOI
               19.      Shu, R.; Guan, Y.; Liu, B. Preparation of nitrogen-doped reduced graphene oxide/zinc ferrite@nitrogen-doped carbon composite for
                   broadband and highly efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2025, 214, 16-26.  DOI
               20.      Yu, S.; Guo, J.; Zhang, G.; et al. Improved broadband design of SiC/MWCNT absorbing materials through synergistic regulation of
                   heterointerface structure and triple periodic minimal surface meta-structure. Carbon 2024, 226, 119181.  DOI
               21.      Fan, X.; Xu, Z.; Wang, J.; et al. Constructing magnetic iron-based core-shell structure and dielectric nitrogen-doped reduced graphene
                   oxide nanocomposite for enhanced microwave absorption performance. Appl. Surf. Sci. 2023, 607, 155013.  DOI
               22.      Chen, J.; Lei, B.; Hou, Y.; et al. Graphene aerogel encapsulated double carbon shell CoFe@C@C nanocubes for construction of high
                   performance microwave absorbing materials. Carbon 2024, 224, 119081.  DOI
               23.      Zhao, Y.; Zhang, H.; Yang, X.; et al. In situ construction of hierarchical core–shell Fe O @C nanoparticles–helical carbon nanocoil
                                                                            3  4
                   hybrid composites for highly efficient electromagnetic wave absorption. Carbon 2021, 171, 395-408.  DOI
               24.      Li, Z.; Zhu, H.; Rao, L.; et al. Wrinkle structure regulating electromagnetic parameters in constructed core-shell ZnFe O @PPy
                                                                                                   2
                                                                                                     4
                   microspheres as absorption materials. Small 2024, 20, e2308581.  DOI  PubMed
               25.      Si, W.; Liao, Q.; Chu, Y.; Zhang, Z.; Chu, X.; Qin, L. A multi-layer core-shell structure CoFe O @Fe C@NiO composite with high
                                                                                   4
                                                                                      3
                                                                                 2
                   broadband electromagnetic wave-absorption performance. Nanoscale 2023, 15, 16381-9.  DOI
               26.      Yang, B.; Fang, J.; Xu, C.; et al. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption.
                   Nanomicro. Lett. 2022, 14, 170.  DOI  PubMed  PMC
               27.      Huang,  M.;  Wang,  L.;  Liu,  Q.;  You,  W.;  Che,  R.  Interface  compatibility  engineering  of  Multi-shell  Fe@C@TiO @MoS
                                                                                                    2    2
                   heterojunction expanded microwave absorption bandwidth. Chem. Eng. J. 2022, 429, 132191.  DOI
               28.      Liu, J.; Zhang, L.; Zang, D.; Wu, H. A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave
                   absorption. Adv. Funct. Mater. 2021, 31, 2105018.  DOI
               29.      Cheng, D.; Xu, J.; Liu, C.; et al. High microwave absorption performance of NiS /rGO nanocomposites with a thin thickness. J. Phys.
                                                                        2
                   Chem. Solids. 2021, 157, 110222.  DOI
               30.      Xu, R.; He, M.; Feng, S.; et al. Microstructure optimization strategy of ZnIn S /rGO composites toward enhanced and tunable
                                                                        2 4
                   electromagnetic wave absorption properties. Dalton. Trans. 2023, 52, 15057-70.  DOI  PubMed
               31.      Chaudhari, N. S.; Warule, S. S.; Kale, B. B. Architecture of rose and hollow marigold-like ZnIn S  flowers: structural, optical and
                                                                                   2 4
                   photocatalytic study. RSC. Adv. 2014, 4, 12182.  DOI
   94   95   96   97   98   99   100   101   102   103   104