Page 99 - Read Online
P. 99
Page 14 of 16 Sun et al. Soft Sci. 2025, 5, 35 https://dx.doi.org/10.20517/ss.2025.21
absorption at a low filling content. Chem. Eng. J. 2024, 495, 153663. DOI
3. Wei, H.; Li, W.; Bachagha, K. Component optimization and microstructure design of carbon nanotube-based microwave absorbing
materials: a review. Carbon 2024, 217, 118651. DOI
4. Wang, J.; Ren, J.; Li, Q.; Liu, Y.; Zhang, Q.; Zhang, B. Synthesis and microwave absorbing properties of N-doped carbon microsphere
composites with concavo-convex surface. Carbon 2021, 184, 195-206. DOI
5. Rehman, S. U.; Xu, S.; Li, Z.; et al. Hierarchical-bioinspired MOFs enhanced electromagnetic wave absorption. Small 2024, 20,
e2306466. DOI PubMed
6. Habibpour, S.; Rahimi-Darestani, Y.; Salari, M.; et al. Synergistic layered design of aerogel nanocomposite of graphene nanoribbon/
MXene with tunable absorption dominated electromagnetic interference shielding. Small 2024, 20, e2404876. DOI PubMed
7. Wang, B.; Xu, C.; Duan, G.; Xu, W.; Pi, F. Review of broadband metamaterial absorbers: from principles, design strategies, and
tunable properties to functional applications. Adv. Funct. Mater. 2023, 33, 2213818. DOI
8. Wang, X.; Xing, X.; Zhu, H.; Li, J.; Liu, T. State of the art and prospects of Fe O /carbon microwave absorbing composites from the
3
4
dimension and structure perspective. Adv. Colloid. Interface. Sci. 2023, 318, 102960. DOI PubMed
9. Zeng, X.; Cheng, X.; Yu, R.; Stucky, G. D. Electromagnetic microwave absorption theory and recent achievements in microwave
absorbers. Carbon 2020, 168, 606-23. DOI
10. Abdalla, I.; Elhassan, A.; Ali, S.; et al. Impact of defect-rich carbon nanofibers combined with magnetic materials on broadband
electromagnetic wave absorption and radar cross-section reduction. Small. Struct. 2025, 6, 2400624. DOI
11. Cai, L.; Pan, F.; Zhu, X.; et al. Etching engineering and electrostatic self-assembly of N-doped MXene/hollow Co-ZIF hybrids for
high-performance microwave absorbers. Chem. Eng. J. 2022, 434, 133865. DOI
12. Zhang, Y.; Zhu, C.; Gao, S. Multi-scale magnetic and electric interaction in gradient magnetic-dielectric heterostructures with
excellent low-frequency electromagnetic wave absorption. Nano. Res. 2025,. DOI
13. An, J.; Zhao, C.; He, Z.; et al. Synthesis and microwave absorption property of nanostructured Ketjen black/Fe O core/shell particles.
3 4
Rare. Met. 2022, 41, 3351-9. DOI
14. Cui, Y.; Yang, K.; Wang, J.; Shah, T.; Zhang, Q.; Zhang, B. Preparation of pleated RGO/MXene/Fe O microsphere and its absorption
3 4
properties for electromagnetic wave. Carbon 2021, 172, 1-14. DOI
15. Song, J.; Jiao, J.; Liu, H.; et al. Effect of surface state of SiC fibers on their interfacial properties. Compos. Commun. 2025, 53, 102232.
DOI
16. Meng, X.; Liu, Y.; Han, G.; Yang, W.; Yu, Y. Three-dimensional (Fe O /ZnO)@C Double-core@shell porous nanocomposites with
3
4
enhanced broadband microwave absorption. Carbon 2020, 162, 356-64. DOI
17. He, J.; Gao, S.; Zhang, Y.; Zhang, X.; Li, H. N-doped residual carbon from coal gasification fine slag decorated with Fe O
3 4
nanoparticles for electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 104, 98-108. DOI
18. Dong, C.; Li, D.; Wang, H.; et al. CoSe @polythiophene core-shell composites with enhanced interfacial polarization for high-
2
performance broadband electromagnetic absorption. Carbon 2023, 215, 118459. DOI
19. Shu, R.; Guan, Y.; Liu, B. Preparation of nitrogen-doped reduced graphene oxide/zinc ferrite@nitrogen-doped carbon composite for
broadband and highly efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2025, 214, 16-26. DOI
20. Yu, S.; Guo, J.; Zhang, G.; et al. Improved broadband design of SiC/MWCNT absorbing materials through synergistic regulation of
heterointerface structure and triple periodic minimal surface meta-structure. Carbon 2024, 226, 119181. DOI
21. Fan, X.; Xu, Z.; Wang, J.; et al. Constructing magnetic iron-based core-shell structure and dielectric nitrogen-doped reduced graphene
oxide nanocomposite for enhanced microwave absorption performance. Appl. Surf. Sci. 2023, 607, 155013. DOI
22. Chen, J.; Lei, B.; Hou, Y.; et al. Graphene aerogel encapsulated double carbon shell CoFe@C@C nanocubes for construction of high
performance microwave absorbing materials. Carbon 2024, 224, 119081. DOI
23. Zhao, Y.; Zhang, H.; Yang, X.; et al. In situ construction of hierarchical core–shell Fe O @C nanoparticles–helical carbon nanocoil
3 4
hybrid composites for highly efficient electromagnetic wave absorption. Carbon 2021, 171, 395-408. DOI
24. Li, Z.; Zhu, H.; Rao, L.; et al. Wrinkle structure regulating electromagnetic parameters in constructed core-shell ZnFe O @PPy
2
4
microspheres as absorption materials. Small 2024, 20, e2308581. DOI PubMed
25. Si, W.; Liao, Q.; Chu, Y.; Zhang, Z.; Chu, X.; Qin, L. A multi-layer core-shell structure CoFe O @Fe C@NiO composite with high
4
3
2
broadband electromagnetic wave-absorption performance. Nanoscale 2023, 15, 16381-9. DOI
26. Yang, B.; Fang, J.; Xu, C.; et al. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption.
Nanomicro. Lett. 2022, 14, 170. DOI PubMed PMC
27. Huang, M.; Wang, L.; Liu, Q.; You, W.; Che, R. Interface compatibility engineering of Multi-shell Fe@C@TiO @MoS
2 2
heterojunction expanded microwave absorption bandwidth. Chem. Eng. J. 2022, 429, 132191. DOI
28. Liu, J.; Zhang, L.; Zang, D.; Wu, H. A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave
absorption. Adv. Funct. Mater. 2021, 31, 2105018. DOI
29. Cheng, D.; Xu, J.; Liu, C.; et al. High microwave absorption performance of NiS /rGO nanocomposites with a thin thickness. J. Phys.
2
Chem. Solids. 2021, 157, 110222. DOI
30. Xu, R.; He, M.; Feng, S.; et al. Microstructure optimization strategy of ZnIn S /rGO composites toward enhanced and tunable
2 4
electromagnetic wave absorption properties. Dalton. Trans. 2023, 52, 15057-70. DOI PubMed
31. Chaudhari, N. S.; Warule, S. S.; Kale, B. B. Architecture of rose and hollow marigold-like ZnIn S flowers: structural, optical and
2 4
photocatalytic study. RSC. Adv. 2014, 4, 12182. DOI

