Page 100 - Read Online
P. 100
Sun et al. Soft Sci. 2025, 5, 35 https://dx.doi.org/10.20517/ss.2025.21 Page 15 of 16
32. Li, M.; Ren, T.; Li, Y.; et al. Constructing CdIn S /ZnS type-I band alignment heterojunctions by decorating CdIn S on ZnS
2 4
2 4
microspheres for efficient photocatalytic H evolution. Int. J. Hydrogen. Energy. 2023, 48, 37224-33. DOI
2
33. Zhang, C.; Niu, X.; Wei, Y.; et al. ZnGa S : an infrared nonlinear optical material with large second-harmonic generation response and
2 4
wide band gap. Rare. Met. 2024, 43, 395-401. DOI
34. Lu, X.; Li, X.; Wang, Y.; et al. Construction of ZnIn S nanosheets/3D carbon heterostructure with Schottky contact for enhancing
2 4
electromagnetic wave absorption performance. Chem. Eng. J. 2022, 431, 134078. DOI
35. Wei, Y.; Wu, Y.; Wang, J.; et al. Rationally designed dual cocatalysts on ZnIn S nanoflowers for photoredox coupling of benzyl
2 4
alcohol oxidation with H evolution. J. Mater. Chem. A. 2024, 12, 18986-92. DOI
2
36. Li, P.; Zhao, Y.; Zhao, Y.; et al. Trimetallic Prussian blue analogue derived FeCo/FeCoNi@NPC composites for highly efficient
microwave absorption. Compos. Part. B. Eng. 2022, 246, 110268. DOI
37. Li, Q.; Li, X.; Zheng, M.; et al. Spatial coupling of photocatalytic CO reduction and selective oxidation on covalent triazine
2
framework/ZnIn S core–shell structures. Adv. Funct. Mater. 2025, 35, 2417279. DOI
2 4
38. Shen, J.; Zhang, D.; Han, C.; Wang, Y.; Zeng, G.; Zhang, H. Three-dimensional flower-like FeCoNi/reduced graphene oxide
nanosheets with enhanced impedance matching for high-performance electromagnetic wave absorption. J. Alloys. Compd. 2021, 883,
160877. DOI
39. Xu, X.; Shen, Y.; Jiao, Z.; et al. Improving absorption performance and microstructure of Zr-V-Fe-Co alloys by substitution of Y
element for Fe. J. Mater. Eng. Perform. 2025,. DOI
40. Adhikari, A.; Chhetri, K.; Rai, R.; et al. (Fe-Co-Ni-Zn)-based metal-organic framework-derived electrocatalyst for zinc-air batteries.
Nanomaterials 2023, 13, 2612. DOI PubMed PMC
41. Rabchinskii, M. K.; Sysoev, V. V.; Brzhezinskaya, M.; et al. Rationalizing graphene-ZnO composites for gas sensing via
functionalization with amines. Nanomaterials 2024, 14, 735. DOI PubMed PMC
42. Rabchinskii, M. K.; Sysoev, V. V.; Ryzhkov, S. A.; et al. A blueprint for the synthesis and characterization of thiolated graphene.
Nanomaterials 2021, 12, 45. DOI PubMed PMC
43. Yang, K.; Cui, Y.; Liu, Z.; Liu, P.; Zhang, Q.; Zhang, B. Design of core–shell structure NC@MoS hierarchical nanotubes as high-
2
performance electromagnetic wave absorber. Chem. Eng. J. 2021, 426, 131308. DOI
44. Jiang, X.; Wang, Q.; Song, L.; et al. Enhancing electromagnetic wave absorption with core-shell structured SiO @MXene@MoS
2 2
nanospheres. Carbon. Energy. 2024, 6, e502. DOI
45. Jiang, R.; Wang, Y.; Wang, J.; He, Q.; Wu, G. Controlled formation of multiple core-shell structures in metal-organic frame materials
for efficient microwave absorption. J. Colloid. Interface. Sci. 2023, 648, 25-36. DOI PubMed
46. Wen, B.; Yang, H.; Lin, Y.; et al. Synthesis of core–shell Co@S-doped carbon@ mesoporous N-doped carbon nanosheets with a
hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A. 2021, 9, 3567-75. DOI
47. Wang, X.; Liu, J.; Han, X.; et al. One-dimensional multicomponent nanofibers engineered as heterostructures for electromagnetic
stealth applications. J. Alloys. Compd. 2025, 1028, 180631. DOI
48. Cheng, Y.; Liu, X.; Ren, J.; et al. Component-based modulation engineering to improve magnetoelectric coupling for self-
anticorrosion broadband absorption. Carbon 2025, 239, 120325. DOI
49. Zhu, J.; Cheng, L.; Zhang, S.; et al. 0D/1D hollow heterogeneous structure to induce self-assembly of CNTs for optimized self-
anticorrosion and electromagnetic wave absorption performance. Carbon 2025, 238, 120310. DOI
50. Yu, B.; Jia, Z.; Lv, C.; et al. Antimony-hybridization engineering in p-n heterojunctions for optimized electromagnetic wave
absorption. Small 2025, 21, e2500918. DOI PubMed
51. Zhang, S.; Li, M.; Chen, G.; et al. Achieving high performance microwave attenuation by anchoring magnetic CoNi nanoparticles onto
few-layer Ti C T MXene. J. Alloys. Compd. 2025, 1023, 180015. DOI
3 2 x
52. Feng, S.; Wang, H.; Ma, J.; et al. Fabrication of hollow Ni/NiO/C/MnO @polypyrrole core-shell structures for high-performance
2
electromagnetic wave absorption. Compos. Part. B. Eng. 2024, 275, 111344. DOI
53. Han, Y.; Chen, F.; Fu, Q. Heterogeneous three-dimensional FeSiAl@SiO @MoS composite with a SiO wave-transmitting layer for
2 2 2
enhanced electromagnetic wave absorption performance. J. Mater. Chem. A. 2024, 12, 25322-33. DOI
54. Zhu, H.; Jiao, Q.; Fu, R.; et al. Cu/NC@Co/NC composites derived from core-shell Cu-MOF@Co-MOF and their electromagnetic
wave absorption properties. J. Colloid. Interface. Sci. 2022, 613, 182-93. DOI PubMed
55. Chang, Q.; Li, C.; Sui, J.; Waterhouse, G. I.; Zhang, Z.; Yu, L. Ni/Ni ZnC modified alginate-derived carbon composites with porous
3
0.7
structures for electromagnetic wave absorption. Carbon 2022, 200, 166-77. DOI
56. Li, W.; Li, W.; Ying, Y.; et al. Multifunctional flower-like core-shell Fe/Fe N@SiO composites for broadband and high-efficiency
4
2
ultrathin electromagnetic wave absorber. J. Mater. Sci. Technol. 2023, 132, 90-9. DOI
57. Zhao, X.; Huang, Y.; Liu, X.; Yu, M.; Zong, M.; Li, T. Magnetic nanorods/carbon fibers heterostructures coated with flower-like
MoS layers for superior microwave absorption. Carbon 2023, 213, 118265. DOI
2
58. Jiao, Z.; Hu, J.; Ma, M.; et al. One-dimensional core-shell CoC@CoFe/C@PPy composites for high-efficiency microwave absorption.
J. Colloid. Interface. Sci. 2023, 650, 2014-23. DOI PubMed
59. Wu, Z.; Huang, J.; Zeng, X. Dual magnetic particles modified carbon nanosheets in CoFe/Co@NC heterostructure for efficient
electromagnetic synergy. Soft. Sci. 2024, 4, 42. DOI
60. Fan, X.; Zhang, X.; Li, L.; Cao, M. Recent progress and perspective of microwave absorption materials derived from metal-organic
frameworks. Soft. Sci. 2024, 4, 43. DOI

