Page 179 - Read Online
P. 179
Page 22 of 28 Wang et al. Soft Sci. 2026, 6, 8
Writing - original draft preparation: Wang, K.; Chu, W.
Visualization and figure preparation: Li, X.
Review and editing: Liu, H.; Wang, K.
Availability of data and materials
Not applicable.
Financial support and sponsorship
Wang, K. acknowledges support from the National Natural Science Foundation of China (No. 52302364) and
the China Postdoctoral Science Foundation (No. 2023T160413).
Conflicts of interest
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2026.
REFERENCES
1. Cao, W.; Wang, X.; Yuan, J.; Wang, W.; Cao, M. Temperature dependent microwave absorption of ultrathin graphene composites. J.
Mater. Chem. C. 2015, 3, 10017-22. DOI
2. Wang, X.; Ma, T.; Shu, J.; Cao, M. Confinedly tailoring Fe 3 O 4 clusters-NG to tune electromagnetic parameters and microwave
absorption with broadened bandwidth. Chem. Eng. J. 2018, 332, 321-30. DOI
3. Du, Y.; Liu, Y.; Wang, A.; Kong, J. Research progress and future perspectives on electromagnetic wave absorption of fibrous materials.
iScience 2023, 26, 107873. DOI PubMed PMC
4. Ran, S.; Sun, K.; Zhao, M.; et al. Metal-organic framework derived carbon-based composites for high-performance microwave
absorption. Adv. Compos. Hybrid. Mater. 2025, 8, 1077. DOI
5. Hao, B.; Chai, Z.; Li, M.; et al. Design of mesoscopic metacomposites for electromagnetic wave absorption: enhancing performance and
gaining mechanistic insights. Soft. Sci. 2025, 5, 39. DOI
6. Wang, C.; Murugadoss, V.; Kong, J.; et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding.
Carbon 2018, 140, 696-733. DOI
7. Zhang, Y.; Wang, X.; Cao, M. Confinedly implanted NiFe 2 O 4 -rGO: cluster tailoring and highly tunable electromagnetic properties for
selective-frequency microwave absorption. Nano. Res. 2018, 11, 1426-36. DOI
8. Zeng, X.; Zhao, C.; Yin, Y.; et al. Construction of NiCo 2 O 4 nanosheets-covered Ti 3 C 2 T x MXene heterostructure for remarkable
electromagnetic microwave absorption. Carbon 2022, 193, 26-34. DOI
9. Wen, L.; Guan, L.; Zhang, J.; et al. Defect engineering boosts microwave absorption in Ta x Nb 1-x C nanowires. Rare. Met. 2025, 44,
2577-88. DOI
10. Ren, S.; Pan, S.; Jin, Y.; et al. Magnetoelectric characterisation of SrFe 12 O 19 @MoS 2 composites with high microwave absorption
performance. Ceram. Int. 2025, 51, 10184-92. DOI
11. Kim, S.; Kim, S.; Yoon, Y.; Lee, K. Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber
matrix in gigahertz frequencies. J. Appl. Phys. 2005, 97, 10F905. DOI
12. Gao, B.; Qiao, L.; Wang, J.; et al. Microwave absorption properties of the Ni nanowires composite. J. Phys. D. Appl. Phys. 2008, 41,
235005. DOI
13. Liu, Y.; Geng, W.; Wang, L.; et al. Designing MXene hydrogels for flexible and high-efficiency electromagnetic wave absorption using
digital light processing 3D printing. Chem. Eng. J. 2025, 505, 159489. DOI
14. He, Y.; Su, Q.; Liu, D.; et al. Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance. Chem.
Eng. J. 2024, 491, 152041. DOI

