Page 181 - Read Online
P. 181
Page 24 of 28 Wang et al. Soft Sci. 2026, 6, 8
41. Shen, Z.; Lan, D.; Cong, Y.; Lian, Y.; Wu, N.; Jia, Z. Tailored heterogeneous interface based on porous hollow In-Co-C nanorods to
construct adjustable multi-band microwave absorber. J. Mater. Sci. Technol. 2024, 181, 128-37. DOI
42. Ren, X.; Zhen, M.; Meng, F.; Meng, X.; Zhu, M. Progress, challenges and prospects of biomass-derived lightweight carbon-based
microwave-absorbing materials. Nanomaterials 2025, 15, 553. DOI PubMed PMC
43. Hao, Z.; Zhou, J.; Lin, S.; et al. Customized heterostructure of transition metal carbides as high-efficiency and anti-corrosion
electromagnetic absorbers. Carbon 2024, 228, 119323. DOI
44. Wu, Z.; Huang, J.; Tan, Y.; Deng, X.; Zeng, X. Transition/rare earth metal co-modified SiC for low-frequency and high-temperature
electromagnetic response. J. Adv. Ceram. 2025, 14, 9221164. DOI
45. Liu, A.; Xu, X.; Qiu, H.; et al. Bioinspired hollow heterostructure fillers for enhanced electromagnetic interference shielding in
polyimide aerogels. InfoMat 2025, 7, e70060. DOI
46. Naqvi, S. T. A.; Singh, C.; Godara, S. K. Functionalization and synthesis of biomass and its composites as renewable, lightweight and
eco-efficient microwave-absorbing materials: a review. J. Alloys. Compd. 2023, 968, 171991. DOI
47. Mei, J.; Luo, J.; Zhao, T.; et al. Morphology engineering of MIL-88A-derived 0D/1D/2D nanocomposites toward wideband microwave
absorption. J. Mater. Sci. Technol. 2025, 226, 65-75. DOI
48. Cao, R.; Qiu, Y.; Zhao, X.; et al. Carbon-CoFe 2 O 4 composite with hierarchical porous structure for efficient microwave absorption.
Diam. Relat. Mater. 2025, 157, 112542. DOI
49. Wang, L.; Huang, M.; Rao, L.; et al. Atomically polarization regulation in molybdenum disulfide nanosheets via phase transition
engineering for superior electromagnetic wave dissipation. Adv. Funct. Mater. 2025, 35, 2507569. DOI
50. Zhang, Y.; Yu, H.; Wang, L.; et al. Research progress on conductive polymer-based microwave absorption materials: from materials
design to functionalities and applications. Mater. Horiz. 2025, 12, 10029-58. DOI PubMed
51. Chen, J.; Zhang, J.; Wang, X.; et al. Alkalized chemical scissors form honeycomb MXene for enhanced microwave absorption
performance. J. Alloys. Compd. 2025, 1036, 181872. DOI
52. Huang, J.; Xu, Z.; Chen, Z.; Liu, Z.; Yuan, G. Preparation of FeSiMn composites and study on the microwave absorption performance. J.
Alloys. Compd. 2025, 1021, 179641. DOI
53. Shu, R.; Guan, Y.; Liu, B. Preparation of nitrogen-doped reduced graphene oxide/zinc ferrite@nitrogen-doped carbon composite for
broadband and highly efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2025, 214, 16-26. DOI
54. Li, J.; Lan, D.; Cheng, Y.; et al. Constructing mixed-dimensional lightweight magnetic cobalt-based composites heterostructures: an
effective strategy to achieve boosted microwave absorption and self-anticorrosion. J. Mater. Sci. Technol. 2024, 196, 60-70. DOI
55. Wang, G.; Gao, Z.; Wan, G.; Lin, S.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by
atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano. Res. 2014, 7, 704-16. DOI
56. Zhao, B.; Lan, D.; Zhang, M.; Liu, L.; Wu, N.; Yao, S. Multiphase interface engineering based on porous manganous oxide toward
broad-band microwave absorption. Mater. Res. Bull. 2024, 171, 112621. DOI
57. Zhang, S.; Zheng, J.; Lv, C.; et al. Synergistic enhancement of defect-induced polarization and built-in electric field effect in carbon
hybrids towards efficient electromagnetic wave absorption. Carbon 2025, 234, 120037. DOI
58. Xie, L.; Liu, R.; Jiang, X.; et al. Carbon induced multiple interfaces and in-situ formed defects in oxidation of Co toward enhancing
microwave absorption performances. Carbon 2025, 238, 120272. DOI
59. Ren, J.; Shi, P.; Zu, X.; et al. Challenges and future prospects of the 2D material-based composites for microwave absorption. Nanoscale
2025, 17, 13622-45. DOI PubMed
60. Guo, Z.; Zhang, X.; Lv, C.; et al. Advantageous synergistic strategy to construct Ni@C/PC composites for efficient electromagnetic
wave absorption. Carbon 2025, 234, 120010. DOI
61. Tariq, M. R.; Ahmad, M.; Naik, M.; Khan, I.; Zhang, B. A comprehensive review of the advancement of transition metal oxide
nanocomposites for microwave absorption. Coord. Chem. Rev. 2025, 533, 216535. DOI
62. Zhou, Z.; Lan, D.; Ren, J.; et al. Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet
metal-sulfide complexes for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2024, 185, 165-73. DOI
63. Jiang, B.; Shang, J.; Zhang, F.; et al. Electrospinning fabrication of hollow C@TiO 2 /Fe 3 C nanofibers composites for excellent wave
absorption at a low filling content. Chem. Eng. J. 2024, 495, 153663. DOI
64. Hu, J.; Jiang, J.; Li, Q.; et al. Metal–organic framework-based composites for dual functionalities: advances in microwave absorption and
flame retardancy. J. Compos. Sci. 2025, 9, 121. DOI
65. Wu, D.; Fan, C.; Luo, W.; Jin, Y.; He, Q.; Wang, Y. Enhanced interfacial polarization loss induced by hollow engineering of hollow
alloyed CoFe-ZIF nanocages/carbon nanofibers for efficient microwave absorption. Inorg. Chem. Front. 2025, 12, 3083-97. DOI
66. Zhang, D.; He, W.; Quan, G.; et al. Sterculia lychnophora seed-derived porous carbon@CoFe 2 O 4 composites with efficient microwave
absorption performance. Appl. Surf. Sci. 2023, 607, 155027. DOI

