Page 27 - Read Online
P. 27

He et al. Soft Sci 2024;4:37  https://dx.doi.org/10.20517/ss.2024.32            Page 25 of 27

               52.       Park J, Pramanick S, Park D, et al. Therapeutic-gas-responsive hydrogel. Adv Mater 2017;29:1702859.  DOI
               53.       Yao X, Liu J, Yang C, et al. Hydrogel paint. Adv Mater 2019;31:e1903062.  DOI
               54.       Guo Y, Bae J, Fang Z, Li P, Zhao F, Yu G. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem Rev
                    2020;120:7642-707.  DOI
               55.       Appel EA, Loh XJ, Jones ST, Dreiss CA, Scherman OA. Sustained release of proteins from high water content supramolecular
                    polymer hydrogels. Biomaterials 2012;33:4646-52.  DOI  PubMed
               56.       Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater 2016;1:16071.  DOI  PubMed  PMC
               57.       Peers S, Montembault A, Ladavière C. Chitosan hydrogels for sustained drug delivery. J Control Release 2020;326:150-63.  DOI
                    PubMed
               58.       Han Z, Wang P, Mao G, et al. Dual pH-responsive hydrogel actuator for lipophilic drug delivery. ACS Appl Mater Interfaces
                    2020;12:12010-7.  DOI  PubMed
               59.       Peers S, Montembault A, Ladavière C. Chitosan hydrogels incorporating colloids for sustained drug delivery. Carbohydr Polym
                    2022;275:118689.  DOI  PubMed
               60.       Khuu N, Kheiri S, Kumacheva E. Structurally anisotropic hydrogels for tissue engineering. Trend Chem 2021;3:1002-26.  DOI
               61.       Kim SH, Seo YB, Yeon YK, et al. 4D-bioprinted silk hydrogels for tissue engineering. Biomaterials 2020;260:120281.  DOI
               62.       Motealleh A, Kehr NS. Nanocomposite hydrogels and their applications in tissue engineering. Adv Healthc Mater 2017;6:1600938.
                    DOI  PubMed
               63.       Zhao Y, Song S, Ren X, Zhang J, Lin Q, Zhao Y. Supramolecular adhesive hydrogels for tissue engineering applications. Chem Rev
                    2022;122:5604-40.  DOI
               64.       Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021;15:12687-722.  DOI
               65.       Xu Y, Chen H, Fang Y, Wu J. Hydrogel combined with phototherapy in wound healing. Adv Healthc Mater 2022;11:e2200494.  DOI
               66.       Liu C, Wang S, Feng SP, Fang NX. Portable green energy out of the blue: hydrogel-based energy conversion devices. Soft Sci
                    2023;3:10.  DOI
               67.       Lu Y, Liu C, Mei C, et al. Recent advances in metal organic framework and cellulose nanomaterial composites. Coordin Chem Rev
                    2022;461:214496.  DOI
               68.       Shijina K, Illathvalappil R, Kurungot S, et al. Chitosan intercalated metal organic gel as a green precursor of Fe entrenched and Fe
                    distributed N-doped mesoporous graphitic carbon for oxygen reduction reaction. ChemistrySelect 2017;2:8762-70.  DOI
               69.       Wang H, Cheng X, Yin F, Chen B, Fan T, He X. Metal-organic gel-derived Fe-Fe O @nitrogen-doped-carbon nanoparticles
                                                                             2  3
                    anchored on nitrogen-doped carbon nanotubes as a highly effective catalyst for oxygen reduction reaction. Electrochim Acta
                    2017;232:114-22.  DOI
               70.       Wang X, Yang Y, Wang R, Li L, Zhao X, Zhang W. Porous Ni S -Co S  carbon aerogels derived from carrageenan/NiCo-MOF
                                                                   9 8
                                                               3 2
                    hydrogels as an efficient electrocatalyst for oxygen evolution in rechargeable Zn-air batteries. Langmuir 2022;38:7280-9.  DOI
                    PubMed
               71.       Sikdar A, Majumdar A, Gogoi A, et al. Diffusion driven nanostructuring of metal–organic frameworks (MOFs) for graphene
                    hydrogel based tunable heterostructures: highly active electrocatalysts for efficient water oxidation. J Mater Chem A 2021;9:7640-9.
                    DOI
               72.       Weng Y, Song Z, Chen C, Tan H. Hybrid hydrogel reactor with metal–organic framework for biomimetic cascade catalysis. Chem
                    Eng J 2021;425:131482.  DOI
               73.       Duan C, Liu C, Meng X, et al. Facile synthesis of Ag NPs@MIL-100(Fe)/guar gum hybrid hydrogel as a versatile photocatalyst for
                    wastewater  remediation:  Photocatalytic  degradation,  water/oil  separation  and  bacterial  inactivation.  Carbohydr  Polym
                    2020;230:115642.  DOI  PubMed
               74.       Guo Y, Lu H, Zhao F, Zhou X, Shi W, Yu G. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water
                    purification. Adv Mater 2020;32:e1907061.  DOI
               75.       Fu W, Chen J, Li C, et al. Enhanced flux and fouling resistance forward osmosis membrane based on a hydrogel/MOF hybrid
                    selective layer. J Colloid Interface Sci 2021;585:158-66.  DOI
               76.       Wang Y, Peng H, Wang H, Zhang M, Zhao W, Zhang Y. In-situ synthesis of MOF nanoparticles in double-network hydrogels for
                    stretchable adsorption device. Chem Eng J 2022;450:138216.  DOI
               77.       Gao D, Liu Z, Cheng Z. Superhydrophilic and underwater superoleophobic in-situ derived 2D Ni-Fe MOF/HNTs composite-
                    enhanced polyvinyl alcohol (PVA) hydrogel membrane for gravity-driven oil/water separation. J Environ Chem Eng 2022;10:107904.
                    DOI
               78.       Biswas S, Haouas M, Freitas C, et al. Engineering of metal–organic frameworks/gelatin hydrogel composites mediated by the
                    coacervation process for the capture of acetic acid. Chem Mater 2022;34:9760-74.  DOI
               79.       Luo Z, Chen H, Wu S, Yang C, Cheng J. Enhanced removal of bisphenol A from aqueous solution by aluminum-based MOF/sodium
                    alginate-chitosan composite beads. Chemosphere 2019;237:124493.  DOI
               80.       Chai Y, Zhang Y, Wang L, et al. In situ one-pot construction of MOF/hydrogel composite beads with enhanced wastewater treatment
                    performance. Sep Purif Technol 2022;295:121225.  DOI
               81.       Mao J, Ge M, Huang J, et al. Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized
                    water remediation. J Mater Chem A 2017;5:11873-81.  DOI
               82.       Chen Z, Zhang ZB, Zeng J, et al. Preparation of polyethyleneimine-modified chitosan/Ce-UIO-66 composite hydrogel for the
   22   23   24   25   26   27   28   29   30   31   32