Page 27 - Read Online
P. 27
He et al. Soft Sci 2024;4:37 https://dx.doi.org/10.20517/ss.2024.32 Page 25 of 27
52. Park J, Pramanick S, Park D, et al. Therapeutic-gas-responsive hydrogel. Adv Mater 2017;29:1702859. DOI
53. Yao X, Liu J, Yang C, et al. Hydrogel paint. Adv Mater 2019;31:e1903062. DOI
54. Guo Y, Bae J, Fang Z, Li P, Zhao F, Yu G. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem Rev
2020;120:7642-707. DOI
55. Appel EA, Loh XJ, Jones ST, Dreiss CA, Scherman OA. Sustained release of proteins from high water content supramolecular
polymer hydrogels. Biomaterials 2012;33:4646-52. DOI PubMed
56. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater 2016;1:16071. DOI PubMed PMC
57. Peers S, Montembault A, Ladavière C. Chitosan hydrogels for sustained drug delivery. J Control Release 2020;326:150-63. DOI
PubMed
58. Han Z, Wang P, Mao G, et al. Dual pH-responsive hydrogel actuator for lipophilic drug delivery. ACS Appl Mater Interfaces
2020;12:12010-7. DOI PubMed
59. Peers S, Montembault A, Ladavière C. Chitosan hydrogels incorporating colloids for sustained drug delivery. Carbohydr Polym
2022;275:118689. DOI PubMed
60. Khuu N, Kheiri S, Kumacheva E. Structurally anisotropic hydrogels for tissue engineering. Trend Chem 2021;3:1002-26. DOI
61. Kim SH, Seo YB, Yeon YK, et al. 4D-bioprinted silk hydrogels for tissue engineering. Biomaterials 2020;260:120281. DOI
62. Motealleh A, Kehr NS. Nanocomposite hydrogels and their applications in tissue engineering. Adv Healthc Mater 2017;6:1600938.
DOI PubMed
63. Zhao Y, Song S, Ren X, Zhang J, Lin Q, Zhao Y. Supramolecular adhesive hydrogels for tissue engineering applications. Chem Rev
2022;122:5604-40. DOI
64. Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021;15:12687-722. DOI
65. Xu Y, Chen H, Fang Y, Wu J. Hydrogel combined with phototherapy in wound healing. Adv Healthc Mater 2022;11:e2200494. DOI
66. Liu C, Wang S, Feng SP, Fang NX. Portable green energy out of the blue: hydrogel-based energy conversion devices. Soft Sci
2023;3:10. DOI
67. Lu Y, Liu C, Mei C, et al. Recent advances in metal organic framework and cellulose nanomaterial composites. Coordin Chem Rev
2022;461:214496. DOI
68. Shijina K, Illathvalappil R, Kurungot S, et al. Chitosan intercalated metal organic gel as a green precursor of Fe entrenched and Fe
distributed N-doped mesoporous graphitic carbon for oxygen reduction reaction. ChemistrySelect 2017;2:8762-70. DOI
69. Wang H, Cheng X, Yin F, Chen B, Fan T, He X. Metal-organic gel-derived Fe-Fe O @nitrogen-doped-carbon nanoparticles
2 3
anchored on nitrogen-doped carbon nanotubes as a highly effective catalyst for oxygen reduction reaction. Electrochim Acta
2017;232:114-22. DOI
70. Wang X, Yang Y, Wang R, Li L, Zhao X, Zhang W. Porous Ni S -Co S carbon aerogels derived from carrageenan/NiCo-MOF
9 8
3 2
hydrogels as an efficient electrocatalyst for oxygen evolution in rechargeable Zn-air batteries. Langmuir 2022;38:7280-9. DOI
PubMed
71. Sikdar A, Majumdar A, Gogoi A, et al. Diffusion driven nanostructuring of metal–organic frameworks (MOFs) for graphene
hydrogel based tunable heterostructures: highly active electrocatalysts for efficient water oxidation. J Mater Chem A 2021;9:7640-9.
DOI
72. Weng Y, Song Z, Chen C, Tan H. Hybrid hydrogel reactor with metal–organic framework for biomimetic cascade catalysis. Chem
Eng J 2021;425:131482. DOI
73. Duan C, Liu C, Meng X, et al. Facile synthesis of Ag NPs@MIL-100(Fe)/guar gum hybrid hydrogel as a versatile photocatalyst for
wastewater remediation: Photocatalytic degradation, water/oil separation and bacterial inactivation. Carbohydr Polym
2020;230:115642. DOI PubMed
74. Guo Y, Lu H, Zhao F, Zhou X, Shi W, Yu G. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water
purification. Adv Mater 2020;32:e1907061. DOI
75. Fu W, Chen J, Li C, et al. Enhanced flux and fouling resistance forward osmosis membrane based on a hydrogel/MOF hybrid
selective layer. J Colloid Interface Sci 2021;585:158-66. DOI
76. Wang Y, Peng H, Wang H, Zhang M, Zhao W, Zhang Y. In-situ synthesis of MOF nanoparticles in double-network hydrogels for
stretchable adsorption device. Chem Eng J 2022;450:138216. DOI
77. Gao D, Liu Z, Cheng Z. Superhydrophilic and underwater superoleophobic in-situ derived 2D Ni-Fe MOF/HNTs composite-
enhanced polyvinyl alcohol (PVA) hydrogel membrane for gravity-driven oil/water separation. J Environ Chem Eng 2022;10:107904.
DOI
78. Biswas S, Haouas M, Freitas C, et al. Engineering of metal–organic frameworks/gelatin hydrogel composites mediated by the
coacervation process for the capture of acetic acid. Chem Mater 2022;34:9760-74. DOI
79. Luo Z, Chen H, Wu S, Yang C, Cheng J. Enhanced removal of bisphenol A from aqueous solution by aluminum-based MOF/sodium
alginate-chitosan composite beads. Chemosphere 2019;237:124493. DOI
80. Chai Y, Zhang Y, Wang L, et al. In situ one-pot construction of MOF/hydrogel composite beads with enhanced wastewater treatment
performance. Sep Purif Technol 2022;295:121225. DOI
81. Mao J, Ge M, Huang J, et al. Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized
water remediation. J Mater Chem A 2017;5:11873-81. DOI
82. Chen Z, Zhang ZB, Zeng J, et al. Preparation of polyethyleneimine-modified chitosan/Ce-UIO-66 composite hydrogel for the

