Page 26 - Read Online
P. 26

Page 24 of 27                             He et al. Soft Sci 2024;4:37  https://dx.doi.org/10.20517/ss.2024.32

                    Rev Chem 2023;7:273-86.  DOI  PubMed
               22.       Zhang CL, Zhou T, Li YQ, et al. Microenvironment modulation of metal-organic frameworks (MOFs) for coordination olefin
                    oligomerization and (co)polymerization. Small 2023;19:e2205898.  DOI  PubMed
               23.       Lin RB, Xiang S, Xing H, Zhou W, Chen B. Exploration of porous metal-organic frameworks for gas separation and purification.
                    Coord Chem Rev 2019;378:87-103.  DOI  PubMed  PMC
               24.       Ma K, Wasson MC, Wang X, et al. Near-instantaneous catalytic hydrolysis of organophosphorus nerve agents with zirconium-based
                    MOF/hydrogel composites. Chem Catal 2021;1:721-33.  DOI
               25.       Yao MS, Zheng JJ, Wu AQ, et al. A dual-ligand porous coordination polymer chemiresistor with modulated conductivity and
                    porosity. Angew Chem Int Ed Engl 2020;59:172-6.  DOI  PubMed
               26.       Yang H, Bradley SJ, Chan A, et al. Catalytically active bimetallic nanoparticles supported on porous carbon capsules derived from
                    metal-organic framework composites. J Am Chem Soc 2016;138:11872-81.  DOI  PubMed
               27.       Yang X, Xiang C, Wang R. Harvesting clean energy from moisture. Device 2023;1:100016.  DOI
               28.       Luo R, Fu H, Li Y, et al. In situ fabrication of metal–organic framework thin films with enhanced pervaporation performance. Adv
                    Funct Mater 2023;33:2213221.  DOI
               29.       Shao Z, Tang Y, Lv H, et al. High-performance solar-driven MOF AWH device with ultra-dense integrated modular design and
                    reflux synthesis of Ni Cl (BTDD). Device 2023;1:100058.  DOI
                                  2  2
               30.       Healy C, Patil KM, Wilson BH, et al. The thermal stability of metal-organic frameworks. Coordin Chem Rev 2020;419:213388.  DOI
               31.       Guo H, Feng Q, Xu K, et al. Self-templated conversion of metallogel into heterostructured TMP@carbon quasiaerogels boosting
                    bifunctional electrocatalysis. Adv Funct Mater 2019;29:1903660.  DOI
               32.       Hu Y, Wang Y, Fang Z, et al. MOF supraparticles for atmosphere water harvesting at low humidity. J Mater Chem A 2022;10:15116-
                    26.  DOI
               33.       Lenzen D, Bendix P, Reinsch H, et al. Scalable green synthesis and full-scale test of the metal-organic framework CAU-10-H for use
                    in adsorption-driven chillers. Adv Mater 2018;30:1705869.  DOI  PubMed
               34.       Feng Y, Wang R, Ge T. Full passive MOF water harvester in a real desert climate. Device 2023;1:100054.  DOI
               35.       Hu C, Bai Y, Hou M, et al. Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in
                    microfluidic gradient mixing synthesis. Sci Adv 2020;6:eaax5785.  DOI  PubMed  PMC
               36.       Fu H, Ou P, Zhu J, Song P, Yang J, Wu Y. Enhanced protein adsorption in fibrous substrates treated with zeolitic imidazolate
                    framework-8 (ZIF-8) nanoparticles. ACS Appl Nano Mater 2019;2:7626-36.  DOI
               37.       Xu X, Jerca VV, Hoogenboom R. Bioinspired double network hydrogels: from covalent double network hydrogels via hybrid double
                    network hydrogels to physical double network hydrogels. Mater Horiz 2021;8:1173-88.  DOI  PubMed
               38.       Huang X, Wang L, Shen Z, et al. Super-stretchable and self-healing hydrogel with a three-dimensional silver nanowires network
                    structure for wearable sensor and electromagnetic interference shielding. Chem Eng J 2022;446:137136.  DOI
               39.       Li M, Guan Q, Li C, Saiz E. Self-powered hydrogel sensors. Device 2023;1:100007.  DOI
               40.       Mao X, Wang L, Gu S, et al. Synthesis of a three-dimensional network sodium alginate–poly(acrylic acid)/attapulgite hydrogel with
                                                                      2+
                                                                2+
                    good mechanic property and reusability for efficient adsorption of Cu  and Pb . Environ Chem Lett 2018;16:653-8.  DOI
               41.       Zhu B, Ma D, Wang J, Zhang S. Structure and properties of semi-interpenetrating network hydrogel based on starch. Carbohydr
                    Polym 2015;133:448-55.  DOI
               42.       Jongprasitkul H, Parihar VS, Turunen S, Kellomäki M. pH-responsive gallol-functionalized hyaluronic acid-based tissue adhesive
                    hydrogels for injection and three-dimensional bioprinting. ACS Appl Mater Interfaces 2023;15:33972-84.  DOI  PubMed  PMC
               43.       Hu K, He P, Zhao Z, et al. Nature-inspired self-powered cellulose nanofibrils hydrogels with high sensitivity and mechanical
                    adaptability. Carbohydr Polym 2021;264:117995.  DOI
               44.       Feng L, Wang Y, Yuan S, et al. Porphyrinic metal–organic frameworks installed with Brønsted acid sites for efficient tandem
                    semisynthesis of artemisinin. ACS Catal 2019;9:5111-8.  DOI
               45.       Logar NZ, Kaučič V. Nanoporous materials: from catalysis and hydrogen storage to wastewater treatment. Acta Chim Slov
                    2006;53:117-35.  Available  from:  https://www.researchgate.net/profile/Natasa-Zabukovec-Logar/publication/228639201_
                    Nanoporous_Materials_From_Catalysis_and_Hydrogen_Storage_to_Wastewater_Treatment/links/0046353ac2d2c6c818000000/
                    Nanoporous-Materials-From-Catalysis-and-Hydrogen-Storage-to-Wastewater-Treatment.pdf. [Last accessed on 25 Oct 2024]
               46.       Li M, Ma C, Liu X, Su J, Cui X, He Y. Synthesis of a 2D phosphorus material in a MOF-based 2D nano-reactor. Chem Sci
                    2018;9:5912-8.  DOI  PubMed  PMC
               47.       Huang H, Han L, Li J, et al. Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable
                    sensor. J Mater Chem A 2020;8:10291-300.  DOI
               48.       Zhu L, Qiu J, Sakai E. A high modulus hydrogel obtained from hydrogen bond reconstruction and its application in vibration damper.
                    RSC Adv 2017;7:43755-63.  DOI
               49.       Cavka JH, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with
                    exceptional stability. J Am Chem Soc 2008;130:13850-1.  DOI  PubMed
               50.       Chen W, Tao W. Precise control of the structure of synthetic hydrogel networks for precision medicine applications. Matter
                    2022;5:18-9.  DOI
               51.       Jin C, Shang H. Synthetic methods, properties and controlling roles of synthetic parameters of zeolite imidazole framework-8: a
                    review. J Solid State Chem 2021;297:122040.  DOI
   21   22   23   24   25   26   27   28   29   30   31