Page 128 - Read Online
P. 128
Xiao et al. Soft Sci. 2025, 5, 40 https://dx.doi.org/10.20517/ss.2025.51 Page 7 of 8
144. DOI PubMed PMC
10. Kim, J.; Kim, Y.; Lee, J.; Shin, M.; Son, D. Wearable liquid metal composite with skin-adhesive chitosan-alginate-chitosan hydrogel
for stable electromyogram signal monitoring. Polymers 2023, 15, 3692. DOI PubMed PMC
11. Yin, R.; Wang, D.; Zhao, S.; Lou, Z.; Shen, G. Wearable sensors-enabled human-machine interaction systems: from design to
application. Adv. Funct. Mater. 2021, 31, 2008936. DOI
12. Dang, C.; Zhang, F.; Li, Y.; et al. Lithium bonds enable small biomass molecule-based ionoelastomers with multiple functions for soft
intelligent electronics. Small 2022, 18, e2200421. DOI PubMed
13. Shao, C.; Chang, H.; Wang, M.; Xu, F.; Yang, J. High-strength, tough, and self-healing nanocomposite physical hydrogels based on
the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS. Appl. Mater. Interfaces. 2017, 9, 28305-18. DOI
PubMed
14. Shao, C.; Meng, L.; Wang, M.; et al. Mimicking dynamic adhesiveness and strain-stiffening behavior of biological tissues in tough and
self-healable cellulose nanocomposite hydrogels. ACS. Appl. Mater. Interfaces. 2019, 11, 5885-95. DOI PubMed
15. Yang, S.; Cheng, J.; Shang, J.; et al. Stretchable surface electromyography electrode array patch for tendon location and muscle injury
prevention. Nat. Commun. 2023, 14, 6494. DOI PubMed PMC
16. Liang, Q.; Xia, X.; Sun, X.; et al. Highly stretchable hydrogels as wearable and implantable sensors for recording physiological and
brain neural signals. Adv. Sci. 2022, 9, e2201059. DOI PubMed PMC
17. Wang, H.; Ding, Q.; Luo, Y.; et al. High-performance hydrogel sensors enabled multimodal and accurate human-machine interaction
system for active rehabilitation. Adv. Mater. 2024, 36, e2309868. DOI PubMed
18. Chang, Y.; Wang, L.; Li, R.; et al. First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv. Mater.
2021, 33, e2003464. DOI PubMed
19. Han, Q.; Zhang, C.; Guo, T.; et al. Hydrogel nanoarchitectonics of a flexible and self-adhesive electrode for long-term wireless
electroencephalogram recording and high-accuracy sustained attention evaluation. Adv. Mater. 2023, 35, e2209606. DOI PubMed
20. Lu, J.; Li, Q.; Huang, Q.; et al. A highly sensitive surface electrode for electrophysiological monitoring. Adv. Funct. Mater. 2025, 35,
2421132. DOI
21. Liu, S.; Rao, Y.; Jang, H.; Tan, P.; Lu, N. Strategies for body-conformable electronics. Matter 2022, 5, 1104-36. DOI
22. Lu, Y.; Yang, G.; Wang, S.; et al. Stretchable graphene-hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron.
2024, 7, 51-65. DOI
23. Li, M.; Zhang, Y.; Lian, L.; et al. Flexible accelerated-wound-healing antibacterial mxene-based epidermic sensor for intelligent
wearable human-machine interaction. Adv. Funct. Mater. 2022, 32, 2208141. DOI
24. Wang, W.; Zhou, H.; Xu, Z.; Li, Z.; Zhang, L.; Wan, P. Flexible conformally bioadhesive MXene hydrogel electronics for machine
learning-facilitated human-interactive sensing. Adv. Mater. 2024, 36, e2401035. DOI PubMed
25. Zheng, K.; Zheng, C.; Zhu, L.; et al. Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term,
High-Fidelity EEG Recording and Attention Assessment. Nanomicro. Lett. 2025, 17, 281. DOI PubMed PMC
26. Huang, X.; Chen, C.; Ma, X.; et al. In situ forming dual-conductive hydrogels enable conformal, self-adhesive and antibacterial
epidermal electrodes. Adv. Funct. Mater. 2023, 33, 2302846. DOI
27. Liu, Y.; Wang, C.; Xue, J.; et al. Body temperature enhanced adhesive, antibacterial, and recyclable ionic hydrogel for epidermal
electrophysiological monitoring. Adv. Healthc. Mater. 2022, 11, e2200653. DOI PubMed
28. Park, J.; Kim, J. Y.; Heo, J. H.; et al. Intrinsically nonswellable multifunctional hydrogel with dynamic nanoconfinement networks for
robust tissue-adaptable bioelectronics. Adv. Sci. 2023, 10, e2207237. DOI PubMed PMC
29. Xu, H.; Zheng, W.; Zhang, Y.; et al. A fully integrated, standalone stretchable device platform with in-sensor adaptive machine
learning for rehabilitation. Nat. Commun. 2023, 14, 7769. DOI PubMed PMC
30. Wu, J.; Xian, J.; He, C.; Lin, H.; Li, J.; Li, F. Asymmetric wettability hydrogel surfaces for enduring electromyographic monitoring.
Adv. Mater. 2024, 36, e2405372. DOI PubMed
31. Chen, J. X. M.; Chen, T.; Zhang, Y.; et al. Conductive bio-based hydrogel for wearable electrodes via direct ink writing on skin. Adv.
Funct. Mater. 2024, 34, 2403721. DOI
32. Bai, Z.; Wang, X.; Huang, M.; et al. Smart battery-free and wireless bioelectronic platform based on a nature-skin-derived
organohydrogel for chronic wound diagnosis, assessment, and accelerated healing. Nano. Energy. 2023, 118, 108989. DOI
33. Ye, Y.; Guo, J.; Wang, A.; et al. Starfish tube feet inspired hydrogel electrode for durable underwater sEMG acquisition. Chem. Eng. J.
2024, 496, 153882. DOI
34. Sun, Y.; Xiao, M.; Tang, Z.; et al. Preparation of active on-demand antibacterial hydrogel epidermis electrodes based on flora balance
strategy for intelligent prostheses. ACS. Appl. Mater. Interfaces. 2025, 17, 37231-42. DOI PubMed
35. Wang, W.; Chen, F.; Fang, L.; Li, Z.; Xie, Z. Reversibly stretchable organohydrogel-based soft electronics with robust and redox-
active interfaces enabled by polyphenol-incorporated double networks. ACS. Appl. Mater. Interfaces. 2022, 14, 12583-95. DOI
PubMed
36. Cai, P.; Wan, C.; Pan, L.; et al. Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify
muscular excitation-contraction signatures. Nat. Commun. 2020, 11, 2183. DOI PubMed PMC
37. Park, S. Y.; Choi, S. J.; Kim, J. C.; Joe, D. J.; Lee, H. E. Self-healable and conductive hydrogel nanocomposite with high
environmental stability for electromagnetic-interference-free electrocardiography patches. Energy. Environ. Mater. e70039. DOI
38. Wang, D.; Xue, H.; Xia, L.; et al. A tough semi-dry hydrogel electrode with anti-bacterial properties for long-term repeatable non-

