Page 177 - Read Online
P. 177
Page 28 of 29 Wang et al. Soft Sci. 2025, 5, 28 https://dx.doi.org/10.20517/ss.2025.11
71. Liu, W.; Chen, M.; Jiang, X.; et al. Dynamic keystroke-password recognition based on piezoelectric-triboelectric coupling sensor
array with crosstalk-free for authentication system. Nano. Energy. 2025, 136, 110667. DOI
72. Shi, M.; Zhang, J.; Chen, H.; et al. Self-powered analogue smart skin. ACS. nano. 2016, 10, 4083-91. DOI PubMed
73. Wang, S.; Nie, Y.; Zhu, H.; et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving
organs. Sci. Adv. 2022, 8, eabl5511. DOI PubMed PMC
74. Lin, W.; Wang, B.; Peng, G.; Shan, Y.; Hu, H.; Yang, Z. Skin-inspired piezoelectric tactile sensor array with crosstalk-free row+
column electrodes for spatiotemporally distinguishing diverse stimuli. Adv. Sci. 2021, 8, 2002817. DOI PubMed PMC
75. Shi, X.; Chen, Y.; Jiang, H.; Yu, D.; Guo, X. High-density force and temperature sensing skin using micropillar array with image
sensor. Adv. Intell. Syst. 2021, 3, 2000280. DOI
76. Park, J.; Lee, Y.; Hong, J.; et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for
ultrasensitive and multimodal electronic skins. ACS. Nano. 2014, 8, 4689-97. DOI PubMed
77. Niu, H.; Wei, X.; Li, H.; et al. Micropyramid array bimodal electronic skin for intelligent material and surface shape perception based
on capacitive sensing. Adv. Sci. 2024, 11, e2305528. DOI PubMed PMC
78. Hua, Q.; Sun, J.; Liu, H.; et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat.
Commun. 2018, 9, 244. DOI PubMed PMC
79. Yan, J.; Ding, J.; Cao, Y.; et al. Bioinspired cilia-based electronic skin for multimodal mechanical sensing via additive
manufacturing. Soft. Sci. 2025, 5, 22. DOI
80. Quan, Y.; Wei, X.; Xiao, L.; et al. Highly sensitive and stable flexible pressure sensors with micro-structured electrodes. J. Alloys.
Compd. 2017, 699, 824-31. DOI
81. Shuai, X.; Zhu, P.; Zeng, W.; et al. Highly sensitive flexible pressure sensor based on silver nanowires-embedded
polydimethylsiloxane electrode with microarray structure. ACS. Appl. Mater. Interfaces. 2017, 9, 26314-24. DOI PubMed
82. Huang, Y.; Peng, C.; Li, Y.; Yang, Y.; Feng, W. Elastomeric polymers for conductive layers of flexible sensors: materials,
fabrication, performance, and applications. Aggregate 2023, 4, e319. DOI
83. Gao, C.; Tong, W.; Liu, S.; Wang, X.; Zhang, Y. Fully degradable chitosan-based triboelectric nanogenerators applying in disposable
medical products for information transfer. Nano. Energy. 2023, 117, 108876. DOI
84. Yang, J. C.; Kim, J. O.; Oh, J.; et al. Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain
and temperature. ACS. Appl. Mater. Interfaces. 2019, 11, 19472-80. DOI PubMed
85. Cui, M.; Yang, W.; Guan, Y.; Zhang, Z. Fabrication of high precision grating patterns with a compliant nanomanipulator-based
femtosecond laser direct writing system. Precis. Eng. 2022, 78, 60-9. DOI
86. Chen, X.; Luo, F.; Yuan, M.; et al. A dual-functional graphene-based self-alarm health-monitoring E-skin. Adv. Funct. Mater. 2019,
29, 1904706. DOI
87. Wei, Y.; Qiao, Y.; Jiang, G.; et al. A wearable skinlike ultra-sensitive artificial graphene throat. ACS. Nano. 2019, 13, 8639-47. DOI
PubMed
88. Yuan, Y.; Jiang, L.; Li, X.; et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication.
Nat. Commun. 2020, 11, 6185. DOI PubMed PMC
89. Kim, D.; Tcho, I.; Jin, I. K.; et al. Direct-laser-patterned friction layer for the output enhancement of a triboelectric nanogenerator.
Nano. Energy. 2017, 35, 379-86. DOI
90. Yan, Z.; Wang, L.; Xia, Y.; et al. Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for
self-powered real-time tactile sensing. Adv. Funct. Mater. 2021, 31, 2100709. DOI
91. Shao, J. Y.; Chen, X. L.; Li, X. M.; Tian, H. M.; Wang, C. H.; Lu, B. H. Nanoimprint lithography for the manufacturing of flexible
electronics. Sci. China. Technol. Sci. 2019, 62, 175-98. DOI
92. Ouyang, Q.; Yao, C.; Chen, H.; et al. Machine learning-coupled tactile recognition with high spatiotemporal resolution based on
cross-striped nanocarbon piezoresistive sensor array. Biosens. Bioelectron. 2024, 246, 115873. DOI PubMed
93. Zhao, W.; Li, K.; Li, Z.; et al. Flexible pressure sensor arrays with high sensitivity and high density based on spinous microstructures
for carved patterns recognition. Adv. Funct. Mater. 2025, 35, 2417238. DOI
94. Liu, Y.; Hou, S.; Wang, X.; et al. Passive radiative cooling enables improved performance in wearable thermoelectric generators.
Small 2022, 18, 2106875. DOI PubMed
95. Kang, S. J.; Hong, H.; Jeong, C.; et al. Avoiding heating interference and guided thermal conduction in stretchable devices using
thermal conductive composite islands. Nano. Res. 2021, 14, 3253-9. DOI
96. Peng, Y.; Li, W.; Liu, B.; et al. Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal
perspiration management. Nat. Commun. 2021, 12, 6122. DOI PubMed PMC
97. Lee, S.; Byun, S. H.; Kim, C. Y.; et al. Beyond human touch perception: an adaptive robotic skin based on gallium microgranules for
pressure sensory augmentation. Adv. Mater. 2022, 34, e2204805. DOI PubMed
98. Jung, Y.; Choi, J.; Yoon, Y.; Park, H.; Lee, J.; Ko, S. H. Soft multi-modal thermoelectric skin for dual functionality of underwater
energy harvesting and thermoregulation. Nano. Energy. 2022, 95, 107002. DOI
99. Lee, J.; Sul, H.; Lee, W.; et al. Stretchable skin-like cooling/heating device for reconstruction of artificial thermal sensation in virtual
reality. Adv. Funct. Mater. 2020, 30, 1909171. DOI
100. Jung, Y.; Kim, M.; Kim, T.; Ahn, J.; Lee, J.; Ko, S. H. Functional materials and innovative strategies for wearable thermal
management applications. Nanomicro. Lett. 2023, 15, 160. DOI PubMed PMC

