Page 177 - Read Online
P. 177

Page 28 of 29                          Wang et al. Soft Sci. 2025, 5, 28  https://dx.doi.org/10.20517/ss.2025.11

               71.       Liu, W.; Chen, M.; Jiang, X.; et al. Dynamic keystroke-password recognition based on piezoelectric-triboelectric coupling sensor
                    array with crosstalk-free for authentication system. Nano. Energy. 2025, 136, 110667.  DOI
               72.       Shi, M.; Zhang, J.; Chen, H.; et al. Self-powered analogue smart skin. ACS. nano. 2016, 10, 4083-91.  DOI  PubMed
               73.       Wang, S.; Nie, Y.; Zhu, H.; et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving
                    organs. Sci. Adv. 2022, 8, eabl5511.  DOI  PubMed  PMC
               74.       Lin, W.; Wang, B.; Peng, G.; Shan, Y.; Hu, H.; Yang, Z. Skin-inspired piezoelectric tactile sensor array with crosstalk-free row+
                    column electrodes for spatiotemporally distinguishing diverse stimuli. Adv. Sci. 2021, 8, 2002817.  DOI  PubMed  PMC
               75.       Shi, X.; Chen, Y.; Jiang, H.; Yu, D.; Guo, X. High-density force and temperature sensing skin using micropillar array with image
                    sensor. Adv. Intell. Syst. 2021, 3, 2000280.  DOI
               76.       Park, J.; Lee, Y.; Hong, J.; et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for
                    ultrasensitive and multimodal electronic skins. ACS. Nano. 2014, 8, 4689-97.  DOI  PubMed
               77.       Niu, H.; Wei, X.; Li, H.; et al. Micropyramid array bimodal electronic skin for intelligent material and surface shape perception based
                    on capacitive sensing. Adv. Sci. 2024, 11, e2305528.  DOI  PubMed  PMC
               78.       Hua, Q.; Sun, J.; Liu, H.; et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat.
                    Commun. 2018, 9, 244.  DOI  PubMed  PMC
               79.       Yan, J.; Ding, J.; Cao, Y.; et al. Bioinspired cilia-based electronic skin for multimodal mechanical sensing via additive
                    manufacturing. Soft. Sci. 2025, 5, 22.  DOI
               80.       Quan, Y.; Wei, X.; Xiao, L.; et al. Highly sensitive and stable flexible pressure sensors with micro-structured electrodes. J. Alloys.
                    Compd. 2017, 699, 824-31.  DOI
               81.       Shuai,  X.;  Zhu,  P.;  Zeng,  W.;  et  al.  Highly  sensitive  flexible  pressure  sensor  based  on  silver  nanowires-embedded
                    polydimethylsiloxane electrode with microarray structure. ACS. Appl. Mater. Interfaces. 2017, 9, 26314-24.  DOI  PubMed
               82.       Huang, Y.; Peng, C.; Li, Y.; Yang, Y.; Feng, W. Elastomeric polymers for conductive layers of flexible sensors: materials,
                    fabrication, performance, and applications. Aggregate 2023, 4, e319.  DOI
               83.       Gao, C.; Tong, W.; Liu, S.; Wang, X.; Zhang, Y. Fully degradable chitosan-based triboelectric nanogenerators applying in disposable
                    medical products for information transfer. Nano. Energy. 2023, 117, 108876.  DOI
               84.       Yang, J. C.; Kim, J. O.; Oh, J.; et al. Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain
                    and temperature. ACS. Appl. Mater. Interfaces. 2019, 11, 19472-80.  DOI  PubMed
               85.       Cui, M.; Yang, W.; Guan, Y.; Zhang, Z. Fabrication of high precision grating patterns with a compliant nanomanipulator-based
                    femtosecond laser direct writing system. Precis. Eng. 2022, 78, 60-9.  DOI
               86.       Chen, X.; Luo, F.; Yuan, M.; et al. A dual-functional graphene-based self-alarm health-monitoring E-skin. Adv. Funct. Mater. 2019,
                    29, 1904706.  DOI
               87.       Wei, Y.; Qiao, Y.; Jiang, G.; et al. A wearable skinlike ultra-sensitive artificial graphene throat. ACS. Nano. 2019, 13, 8639-47.  DOI
                    PubMed
               88.       Yuan, Y.; Jiang, L.; Li, X.; et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication.
                    Nat. Commun. 2020, 11, 6185.  DOI  PubMed  PMC
               89.       Kim, D.; Tcho, I.; Jin, I. K.; et al. Direct-laser-patterned friction layer for the output enhancement of a triboelectric nanogenerator.
                    Nano. Energy. 2017, 35, 379-86.  DOI
               90.       Yan, Z.; Wang, L.; Xia, Y.; et al. Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for
                    self-powered real-time tactile sensing. Adv. Funct. Mater. 2021, 31, 2100709.  DOI
               91.       Shao, J. Y.; Chen, X. L.; Li, X. M.; Tian, H. M.; Wang, C. H.; Lu, B. H. Nanoimprint lithography for the manufacturing of flexible
                    electronics. Sci. China. Technol. Sci. 2019, 62, 175-98.  DOI
               92.       Ouyang, Q.; Yao, C.; Chen, H.; et al. Machine learning-coupled tactile recognition with high spatiotemporal resolution based on
                    cross-striped nanocarbon piezoresistive sensor array. Biosens. Bioelectron. 2024, 246, 115873.  DOI  PubMed
               93.       Zhao, W.; Li, K.; Li, Z.; et al. Flexible pressure sensor arrays with high sensitivity and high density based on spinous microstructures
                    for carved patterns recognition. Adv. Funct. Mater. 2025, 35, 2417238.  DOI
               94.       Liu, Y.; Hou, S.; Wang, X.; et al. Passive radiative cooling enables improved performance in wearable thermoelectric generators.
                    Small 2022, 18, 2106875.  DOI  PubMed
               95.       Kang, S. J.; Hong, H.; Jeong, C.; et al. Avoiding heating interference and guided thermal conduction in stretchable devices using
                    thermal conductive composite islands. Nano. Res. 2021, 14, 3253-9.  DOI
               96.       Peng, Y.; Li, W.; Liu, B.; et al. Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal
                    perspiration management. Nat. Commun. 2021, 12, 6122.  DOI  PubMed  PMC
               97.       Lee, S.; Byun, S. H.; Kim, C. Y.; et al. Beyond human touch perception: an adaptive robotic skin based on gallium microgranules for
                    pressure sensory augmentation. Adv. Mater. 2022, 34, e2204805.  DOI  PubMed
               98.       Jung, Y.; Choi, J.; Yoon, Y.; Park, H.; Lee, J.; Ko, S. H. Soft multi-modal thermoelectric skin for dual functionality of underwater
                    energy harvesting and thermoregulation. Nano. Energy. 2022, 95, 107002.  DOI
               99.       Lee, J.; Sul, H.; Lee, W.; et al. Stretchable skin-like cooling/heating device for reconstruction of artificial thermal sensation in virtual
                    reality. Adv. Funct. Mater. 2020, 30, 1909171.  DOI
               100.      Jung, Y.; Kim, M.; Kim, T.; Ahn, J.; Lee, J.; Ko, S. H. Functional materials and innovative strategies for wearable thermal
                    management applications. Nanomicro. Lett. 2023, 15, 160.  DOI  PubMed  PMC
   172   173   174   175   176   177   178   179   180   181   182