Page 176 - Read Online
P. 176
Wang et al. Soft Sci. 2025, 5, 28 https://dx.doi.org/10.20517/ss.2025.11 Page 27 of 29
42. Cui, X.; Huang, F.; Zhang, X.; et al. Flexible pressure sensors via engineering microstructures for wearable human-machine
interaction and health monitoring applications. iScience 2022, 25, 104148. DOI PubMed PMC
43. Ismail, S. N. A.; Nayan, N. A.; Mohammad, H. M. A. S.; Jaafar, R.; May, Z. Wearable two-dimensional nanomaterial-based flexible
sensors for blood pressure monitoring: a review. Nanomaterials 2023, 13, 852. DOI PubMed PMC
44. Jin, Y.; Xue, S.; He, Y. Flexible pressure sensors enhanced by 3D-printed microstructures. Adv. Mater.2025, e2500076. DOI
PubMed
45. Seesaard, T.; Wongchoosuk, C. Flexible and stretchable pressure sensors: from basic principles to state-of-the-art applications.
Micromachines 2023, 14, 1638. DOI PubMed PMC
46. Kim, K.; Jang, W.; Cho, J. Y.; et al. Transparent and flexible piezoelectric sensor for detecting human movement with a boron nitride
nanosheet (BNNS). Nano. Energy. 2018, 54, 91-8. DOI
47. Kim, M.; Pyo, S.; Oh, Y.; et al. Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor.
Smart. Mater. Struct. 2018, 27, 035001. DOI
48. Pi, Z.; Zhang, J.; Wen, C.; Zhang, Z.; Wu, D. Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-
trifluoroethylene) (PVDF-TrFE) thin film. Nano. Energy. 2014, 7, 33-41. DOI
49. Huang, Y.; Chen, S.; Li, Y.; Lin, Q.; Wu, Y.; Shi, Q. Flexible piezoelectric sensor based on PAN/MXene/PDA@ZnO composite film
for human health and motion detection with fast response and highly sensitive. Chem. Eng. J. 2024, 488, 150997. DOI
50. Ma, M.; Zhang, Z.; Zhao, Z.; et al. Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric
multi-effect coupling mechanism. Nano. Energy. 2019, 66, 104105. DOI
51. Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced carbon for flexible and wearable electronics. Adv. Mater.
2019, 31, e1801072. DOI PubMed
52. Kim, S.; Amjadi, M.; Lee, T. I.; et al. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube
network-coated porous elastomer sponges for human interface and healthcare devices. ACS. Appl. Mater. Interfaces. 2019, 11, 23639-
48. DOI PubMed
53. Lu, Y.; Tian, M.; Sun, X.; et al. Highly sensitive wearable 3D piezoresistive pressure sensors based on graphene coated isotropic non-
woven substrate. Compos. Part. A. Appl. Sci. Manuf. 2019, 117, 202-10. DOI
54. Zhang, Y.; Wang, L.; Zhao, L.; et al. Flexible self-powered integrated sensing system with 3d periodic ordered black phosphorus@
MXene thin-films. Adv. Mater. 2021, 33, e2007890. DOI PubMed
55. Wang, J. C.; Karmakar, R. S.; Lu, Y. J.; Huang, C. Y.; Wei, K. C. Characterization of piezoresistive PEDOT:PSS pressure sensors
with inter-digitated and cross-point electrode structures. Sensors 2015, 15, 818-31. DOI PubMed PMC
56. Lv, B.; Chen, X.; Liu, C. A highly sensitive piezoresistive pressure sensor based on graphene oxide/polypyrrole@polyurethane
sponge. Sensors 2020, 20, 1219. DOI PubMed PMC
57. Wang, L.; Peng, H.; Wang, X.; et al. PDMS/MWCNT-based tactile sensor array with coplanar electrodes for crosstalk suppression.
Microsyst. Nanoeng. 2016, 2, 16065. DOI PubMed PMC
58. Yang, L.; Liu, Y.; Filipe, C. D. M.; et al. Development of a highly sensitive, broad-range hierarchically structured reduced graphene
oxide/polyHIPE foam for pressure sensing. ACS. Appl. Mater. Interfaces. 2019, 11, 4318-27. DOI PubMed
59. Guo, J.; Tong, Y.; Guo, C.; et al. In-situ real-time monitoring of muscle energetics with soft neural-mechanical wearable sensing.
Soft. Sci. 2025, 5, 20. DOI
60. Hwang, J.; Kim, Y.; Yang, H.; Oh, J. H. Fabrication of hierarchically porous structured PDMS composites and their application as a
flexible capacitive pressure sensor. Compos. Part. B. Eng. 2021, 211, 108607. DOI
61. Park, S.; Kim, H.; Vosgueritchian, M.; et al. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple
mechanical stimuli modes. Adv. Mater. 2014, 26, 7324-32. DOI PubMed
62. He, F.; You, X.; Gong, H.; et al. Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/
pressure sensors and triboelectric nanogenerators. ACS. Appl. Mater. Interfaces. 2020, 12, 6442-50. DOI PubMed
63. Huang, J.; Yang, X.; Yu, J.; et al. A universal and arbitrary tactile interactive system based on self-powered optical communication.
Nano. Energy. 2020, 69, 104419. DOI
64. Wang, H. L.; Kuang, S. Y.; Li, H. Y.; Wang, Z. L.; Zhu, G. Large-area integrated triboelectric sensor array for wireless static and
dynamic pressure detection and mapping. Small 2020, 16, e1906352. DOI PubMed
65. Peng, F.; Ren, K.; Chen, R.; et al. Vertically aligned polymer microfibril array for self-powered sensing. Nano. Energy. 2024, 124,
109440. DOI
66. Ye, G.; Jin, T.; Wang, X.; et al. Multimodal integrated flexible electronic skin for physiological perception and contactless kinematics
pattern recognition. Nano. Energy. 2023, 113, 108580. DOI
67. Mu, Y.; Cheng, J.; Shi, W.; et al. Crosstalk-free hybrid integrated multimodal sensor for human temperature, humidity, and pressure
monitoring. Cell. Rep. Phys. Sci. 2024, 5, 102223. DOI
68. Yang, R.; Zhang, W.; Tiwari, N.; Yan, H.; Li, T.; Cheng, H. Multimodal sensors with decoupled sensing mechanisms. Adv. Sci. 2022,
9, e2202470. DOI PubMed PMC
69. Zhang, C.; Liu, C.; Li, B.; et al. Flexible multimodal sensing system based on a vertical stacking strategy for efficiently decoupling
multiple signals. Nano. Lett. 2024, 24, 3186-95. DOI PubMed
70. An, B. W.; Heo, S.; Ji, S.; Bien, F.; Park, J. U. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile
pressure and skin temperature. Nat. Commun. 2018, 9, 2458. DOI PubMed PMC

