Page 176 - Read Online
P. 176

Wang et al. Soft Sci. 2025, 5, 28  https://dx.doi.org/10.20517/ss.2025.11       Page 27 of 29

               42.       Cui, X.; Huang, F.; Zhang, X.; et al. Flexible pressure sensors via engineering microstructures for wearable human-machine
                    interaction and health monitoring applications. iScience 2022, 25, 104148.  DOI  PubMed  PMC
               43.       Ismail, S. N. A.; Nayan, N. A.; Mohammad, H. M. A. S.; Jaafar, R.; May, Z. Wearable two-dimensional nanomaterial-based flexible
                    sensors for blood pressure monitoring: a review. Nanomaterials 2023, 13, 852.  DOI  PubMed  PMC
               44.       Jin, Y.; Xue, S.; He, Y. Flexible pressure sensors enhanced by 3D-printed microstructures. Adv. Mater.2025, e2500076.  DOI
                    PubMed
               45.       Seesaard, T.; Wongchoosuk, C. Flexible and stretchable pressure sensors: from basic principles to state-of-the-art applications.
                    Micromachines 2023, 14, 1638.  DOI  PubMed  PMC
               46.       Kim, K.; Jang, W.; Cho, J. Y.; et al. Transparent and flexible piezoelectric sensor for detecting human movement with a boron nitride
                    nanosheet (BNNS). Nano. Energy. 2018, 54, 91-8.  DOI
               47.       Kim, M.; Pyo, S.; Oh, Y.; et al. Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor.
                    Smart. Mater. Struct. 2018, 27, 035001.  DOI
               48.       Pi, Z.; Zhang, J.; Wen, C.; Zhang, Z.; Wu, D. Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-
                    trifluoroethylene) (PVDF-TrFE) thin film. Nano. Energy. 2014, 7, 33-41.  DOI
               49.       Huang, Y.; Chen, S.; Li, Y.; Lin, Q.; Wu, Y.; Shi, Q. Flexible piezoelectric sensor based on PAN/MXene/PDA@ZnO composite film
                    for human health and motion detection with fast response and highly sensitive. Chem. Eng. J. 2024, 488, 150997.  DOI
               50.       Ma, M.; Zhang, Z.; Zhao, Z.; et al. Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric
                    multi-effect coupling mechanism. Nano. Energy. 2019, 66, 104105.  DOI
               51.       Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced carbon for flexible and wearable electronics. Adv. Mater.
                    2019, 31, e1801072.  DOI  PubMed
               52.       Kim, S.; Amjadi, M.; Lee, T. I.; et al. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube
                    network-coated porous elastomer sponges for human interface and healthcare devices. ACS. Appl. Mater. Interfaces. 2019, 11, 23639-
                    48.  DOI  PubMed
               53.       Lu, Y.; Tian, M.; Sun, X.; et al. Highly sensitive wearable 3D piezoresistive pressure sensors based on graphene coated isotropic non-
                    woven substrate. Compos. Part. A. Appl. Sci. Manuf. 2019, 117, 202-10.  DOI
               54.       Zhang, Y.; Wang, L.; Zhao, L.; et al. Flexible self-powered integrated sensing system with 3d periodic ordered black phosphorus@
                    MXene thin-films. Adv. Mater. 2021, 33, e2007890.  DOI  PubMed
               55.       Wang, J. C.; Karmakar, R. S.; Lu, Y. J.; Huang, C. Y.; Wei, K. C. Characterization of piezoresistive PEDOT:PSS pressure sensors
                    with inter-digitated and cross-point electrode structures. Sensors 2015, 15, 818-31.  DOI  PubMed  PMC
               56.       Lv, B.; Chen, X.; Liu, C. A highly sensitive piezoresistive pressure sensor based on graphene oxide/polypyrrole@polyurethane
                    sponge. Sensors 2020, 20, 1219.  DOI  PubMed  PMC
               57.       Wang, L.; Peng, H.; Wang, X.; et al. PDMS/MWCNT-based tactile sensor array with coplanar electrodes for crosstalk suppression.
                    Microsyst. Nanoeng. 2016, 2, 16065.  DOI  PubMed  PMC
               58.       Yang, L.; Liu, Y.; Filipe, C. D. M.; et al. Development of a highly sensitive, broad-range hierarchically structured reduced graphene
                    oxide/polyHIPE foam for pressure sensing. ACS. Appl. Mater. Interfaces. 2019, 11, 4318-27.  DOI  PubMed
               59.       Guo, J.; Tong, Y.; Guo, C.; et al. In-situ real-time monitoring of muscle energetics with soft neural-mechanical wearable sensing.
                    Soft. Sci. 2025, 5, 20.  DOI
               60.       Hwang, J.; Kim, Y.; Yang, H.; Oh, J. H. Fabrication of hierarchically porous structured PDMS composites and their application as a
                    flexible capacitive pressure sensor. Compos. Part. B. Eng. 2021, 211, 108607.  DOI
               61.       Park, S.; Kim, H.; Vosgueritchian, M.; et al. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple
                    mechanical stimuli modes. Adv. Mater. 2014, 26, 7324-32.  DOI  PubMed
               62.       He, F.; You, X.; Gong, H.; et al. Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/
                    pressure sensors and triboelectric nanogenerators. ACS. Appl. Mater. Interfaces. 2020, 12, 6442-50.  DOI  PubMed
               63.       Huang, J.; Yang, X.; Yu, J.; et al. A universal and arbitrary tactile interactive system based on self-powered optical communication.
                    Nano. Energy. 2020, 69, 104419.  DOI
               64.       Wang, H. L.; Kuang, S. Y.; Li, H. Y.; Wang, Z. L.; Zhu, G. Large-area integrated triboelectric sensor array for wireless static and
                    dynamic pressure detection and mapping. Small 2020, 16, e1906352.  DOI  PubMed
               65.       Peng, F.; Ren, K.; Chen, R.; et al. Vertically aligned polymer microfibril array for self-powered sensing. Nano. Energy. 2024, 124,
                    109440.  DOI
               66.       Ye, G.; Jin, T.; Wang, X.; et al. Multimodal integrated flexible electronic skin for physiological perception and contactless kinematics
                    pattern recognition. Nano. Energy. 2023, 113, 108580.  DOI
               67.       Mu, Y.; Cheng, J.; Shi, W.; et al. Crosstalk-free hybrid integrated multimodal sensor for human temperature, humidity, and pressure
                    monitoring. Cell. Rep. Phys. Sci. 2024, 5, 102223.  DOI
               68.       Yang, R.; Zhang, W.; Tiwari, N.; Yan, H.; Li, T.; Cheng, H. Multimodal sensors with decoupled sensing mechanisms. Adv. Sci. 2022,
                    9, e2202470.  DOI  PubMed  PMC
               69.       Zhang, C.; Liu, C.; Li, B.; et al. Flexible multimodal sensing system based on a vertical stacking strategy for efficiently decoupling
                    multiple signals. Nano. Lett. 2024, 24, 3186-95.  DOI  PubMed
               70.       An, B. W.; Heo, S.; Ji, S.; Bien, F.; Park, J. U. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile
                    pressure and skin temperature. Nat. Commun. 2018, 9, 2458.  DOI  PubMed  PMC
   171   172   173   174   175   176   177   178   179   180   181