Page 175 - Read Online
P. 175
Page 26 of 29 Wang et al. Soft Sci. 2025, 5, 28 https://dx.doi.org/10.20517/ss.2025.11
polyelectrolyte multilayers assembled onto the carbon adhesive tape. ACS. Omega. 2019, 4, 15421-7. DOI PubMed PMC
13. Qin, J.; Tang, Y.; Zeng, Y.; Liu, X.; Tang, D. Recent advances in flexible sensors: from sensing materials to detection modes. TrAC.
Trends. Anal. Chem. 2024, 181, 118027. DOI
14. Wu, P.; Wang, Z.; Yao, X.; Fu, J.; He, Y. Recyclable conductive nanoclay for direct in situ printing flexible electronics. Mater. Horiz.
2021, 8, 2006-17. DOI PubMed
15. Jin, T.; Sun, Z.; Li, L.; et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun.
2020, 11, 5381. DOI PubMed PMC
16. Yao, G.; Jiang, D.; Li, J.; et al. Self-activated electrical stimulation for effective hair regeneration via a wearable omnidirectional
pulse generator. ACS. Nano. 2019, 13, 12345-56. DOI PubMed PMC
17. Invernizzi, F.; Dulio, S.; Patrini, M.; Guizzetti, G.; Mustarelli, P. Energy harvesting from human motion: materials and techniques.
Chem. Soc. Rev. 2016, 45, 5455-73. DOI PubMed
18. Xiong, W.; Zhu, C.; Guo, D.; et al. Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception. Nano. Energy.
2021, 90, 106550. DOI
19. Qiu, L.; Lin, X.; Wang, Y.; Yuan, S.; Shi, W. A mechatronic smart skin of flight vehicle structures for impact monitoring of light
weight and low-power consumption. Mech. Syst. Signal. Process. 2020, 144, 106829. DOI
20. Huang, Y. A.; Zhu, C.; Xiong, W. N.; et al. Flexible smart sensing skin for “Fly-by-Feel” morphing aircraft. Sci. China. Technol. Sci.
2022, 65, 1-29. DOI
21. Tao, J.; Dong, M.; Li, L.; et al. Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer.
Microsyst. Nanoeng. 2020, 6, 62. DOI PubMed PMC
22. Liu, T.; Gou, G. Y.; Gao, F.; et al. Multichannel flexible pulse perception array for intelligent disease diagnosis system. ACS. Nano.
2023, 17, 5673-85. DOI PubMed PMC
23. Formica, D.; Schena, E. Smart sensors for healthcare and medical applications. Sensors 2021, 21, 543. DOI PubMed PMC
24. Oh, H.; Yi, G. C.; Yip, M.; Dayeh, S. A. Scalable tactile sensor arrays on flexible substrates with high spatiotemporal resolution
enabling slip and grip for closed-loop robotics. Sci. Adv. 2020, 6, eabd7795. DOI PubMed PMC
25. Ra, Y.; La, M.; Cho, S.; Park, S. J.; Choi, D. Scalable batch fabrication of flexible, transparent and self-triggered tactile sensor array
based on triboelectric effect. Int. J. of. Precis. Eng. Manuf-Green. Tech. 2021, 8, 519-31. DOI
26. Park, M.; Park, Y. J.; Chen, X.; Park, Y. K.; Kim, M. S.; Ahn, J. H. MoS -based tactile sensor for electronic skin applications. Adv.
2
Mater. 2016, 28, 2556-62. DOI PubMed
27. Shi, J.; Dai, Y.; Cheng, Y.; et al. Embedment of sensing elements for robust, highly sensitive, and cross-talk-free iontronic skins for
robotics applications. Sci. Adv. 2023, 9, eadf8831. DOI PubMed PMC
28. Tian, X.; Cheng, G.; Wu, Z.; et al. High-resolution carbon-based tactile sensor array for dynamic pulse imaging. Adv. Funct. Mater.
2024, 34, 2406022. DOI
29. Mei, S.; Yi, H.; Zhao, J.; et al. High-density, highly sensitive sensor array of spiky carbon nanospheres for strain field mapping. Nat.
Commun. 2024, 15, 3752. DOI PubMed PMC
2
30. Tang, Y., L. Wang, S. Zhang, et al. Flexible active-matrix tactile sensor arrays with high density of 4096 pixels/cm and in-array
sensitivity of 51 kPa-1. In 2024 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, December 7-11,
2024; IEEE: New York, USA, 2025; pp 1-4. DOI
31. Li, Y.; Long, J.; Chen, Y.; Huang, Y.; Zhao, N. Crosstalk-free, high-resolution pressure sensor arrays enabled by high-throughput
laser manufacturing. Adv. Mater. 2022, 34, e2200517. DOI PubMed
32. Chen, X.; Luo, Y.; Chen, Y.; et al. Biomimetic contact behavior inspired tactile sensing array with programmable microdomes pattern
by scalable and consistent fabrication. Adv. Sci. 2024, 11, e2408082. DOI PubMed PMC
33. Luo, H.; Chen, X.; Li, S.; et al. Bioinspired suspended sensing membrane array with modulable wedged-conductive channels for
crosstalk-free and high-resolution detection. Adv. Sci. 2024, 11, e2403645. DOI PubMed PMC
34. Hu, S.; Wang, R.; Zhu, W.; et al. Sub-millimeter scale 3D integration strategy enables ultrahigh-density and ultralow-crosstalk
flexible tactile sensor array for robotic E-skin application. Chem. Eng. J. 2024, 502, 157950. DOI
35. Zhang, Y.; Lu, Q.; He, J.; et al. Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial
crosstalk. Nat. Commun. 2023, 14, 1252. DOI PubMed PMC
36. Li, G.; Zhang, Y.; Zhang, X.; et al. Filiform papillae-inspired wearable pressure sensor with high sensitivity and wide detection range.
Adv. Funct. Mater. 2025, 35, 2414465. DOI
37. Luo, Y.; Chen, X.; Tian, H.; et al. Gecko-inspired slant hierarchical microstructure-based ultrasensitive iontronic pressure sensor for
intelligent interaction. Research 2022, 2022, 9852138. DOI PubMed PMC
38. Chen, R.; Luo, T.; Wang, J.; et al. Nonlinearity synergy: an elegant strategy for realizing high-sensitivity and wide-linear-range
pressure sensing. Nat. Commun. 2023, 14, 6641. DOI PubMed PMC
39. Xiang, Q.; Zhao, G.; Tang, T.; et al. All-carbon piezoresistive sensor: enhanced sensitivity and wide linear range via multiscale
design for wearable applications. Adv. Funct. Mater. 2025, 35, 2418706. DOI
40. Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523-33.
DOI PubMed
41. Zhang, B.; He, J.; Lei, Q.; Li, D. Electrohydrodynamic printing of sub-microscale fibrous architectures with improved cell adhesion
capacity. Virtual. Phys. Prototyp. 2020, 15, 62-74. DOI

