Page 75 - Read Online
P. 75
Wu et al. Soft Sci 2024;4:29 https://dx.doi.org/10.20517/ss.2024.21 Page 21 of 22
nanocrystal ink. Adv Energy Mater 2020;10:2000142. DOI
73. Moon HC, Kim CH, Lodge TP, Frisbie CD. Multicolored, low-power, flexible electrochromic devices based on ion gels. ACS Appl
Mater Interfaces 2016;8:6252-60. DOI PubMed
74. Di Noto V, Lavina S, Giffin GA, Negro E, Scrosati B. Polymer electrolytes: present, past and future. Electrochim Acta 2011;57:4-13.
DOI
75. Wu W, Fang H, Wu L, Ma H, Wang H. Temperature-dependent electrochromic devices for energy-saving dual-mode displays. ACS
Appl Mater Interfaces 2023;15:4113-21. DOI PubMed
76. Wu C, Hsu C, Huang K, Nien P, Lin J, Ho K. A photoelectrochromic device based on gel electrolyte with a fast switching rate. Sol
Energy Mat Sol C 2012;99:148-53. DOI
77. Fang H, Wu L, Ma H, et al. Dual-function biomimetic eyes based on thermally-stable organohydrogel electrolyte. Chem Eng J
2022;438:135383. DOI
78. Chen D, Tan H, Xu T, Wang W, Chen H, Zhang J. Micropatterned PEDOT with enhanced electrochromism and electrochemical
tunable diffraction. ACS Appl Mater Interfaces 2021;13:58011-8. DOI PubMed
79. Pietsch M, Schlisske S, Held M, Strobel N, Wieczorek A, Hernandez-sosa G. Biodegradable inkjet-printed electrochromic display for
sustainable short-lifecycle electronics. J Mater Chem C 2020;8:16716-24. DOI
80. Thakur VK, Ding G, Ma J, Lee PS, Lu X. Hybrid materials and polymer electrolytes for electrochromic device applications. Adv
Mater 2012;24:4071-96. DOI PubMed
81. Eh ALS, Lu X, Lee PS. Advances in polymer electrolytes for electrochromic applications. In: Mortimer RJ, Rosseinsky DR, Monk
PMS, editors. Electrochromic materials and devices. Wiley; 2013. pp. 289-310. DOI
82. Jensen J, Krebs FC. From the bottom up - flexible solid state electrochromic devices. Adv Mater 2014;26:7231-4. DOI PubMed
83. Poh WC, Eh AL, Wu W, Guo X, Lee PS. Rapidly photocurable solid-state poly(ionic liquid) ionogels for thermally robust and
flexible electrochromic devices. Adv Mater 2022;34:e2206952. DOI PubMed
84. Bai Z, Wu X, Fang R, et al. Divalent viologen cation-based ionogels facilitate reversible intercalation of anions in PProDOT-Me for
2
flexible electrochromic displays. Adv Funct Mater 2024;34:2312587. DOI
85. Song R, Li G, Zhang Y, Rao B, Xiong S, He G. Novel electrochromic materials based on chalcogenoviologens for smart windows, E-
price tag and flexible display with improved reversibility and stability. Chem Eng J 2021;422:130057. DOI
86. Kim J, Myoung J. Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based
viologens by multiple patterning. Adv Funct Mater 2019;29:1808911. DOI
87. Gu C, Jia AB, Zhang YM, Zhang SX. Emerging electrochromic materials and devices for future displays. Chem Rev
2022;122:14679-721. DOI PubMed PMC
88. Kim JW, Kim S, Jeong YR, et al. Self-healing strain-responsive electrochromic display based on a multiple crosslinked network
hydrogel. Chem Eng J 2022;430:132685. DOI
89. Viñuales A, Alesanco Y, Cabañero G, Sobrado J, Tena-zaera R. Incorporating paper matrix into flexible devices based on liquid
electrochromic mixtures: Enhanced robustness, durability and multi-color versatility. Sol Energy Mat Sol C 2017;167:22-7. DOI
90. Gu C, Wang X, Jia A, et al. A strategy of stabilization via active energy-exchange for bistable electrochromic displays. CCS Chem
2022;4:2757-67. DOI
91. Lang AW, Österholm AM, Reynolds JR. Paper-based electrochromic devices enabled by nanocellulose-coated substrates. Adv Funct
Mater 2019;29:1903487. DOI
92. Li S, Yan J, Li Y, et al. Dynamically transflective multicolor modulation via single metal-dielectric inorganic electrochromic
electrode. Giant 2024;17:100229. DOI
93. Moon HC, Lodge TP, Frisbie CD. Solution processable, electrochromic ion gels for sub-1 V, flexible displays on plastic. Chem Mater
2015;27:1420-5. DOI
94. Kim J, Kwon D, Myoung J. Rollable and transparent subpixelated electrochromic displays using deformable nanowire electrodes
with improved electrochemical and mechanical stability. Chem Eng J 2020;387:124145. DOI
95. Brooke R, Edberg J, Crispin X, Berggren M, Engquist I, Jonsson MP. Greyscale and paper electrochromic polymer displays by UV
patterning. Polymers 2019;11:267. DOI PubMed PMC
96. Freitag K, Brooke R, Nilsson M, Åhlin J, Beni V, Andersson Ersman P. Screen printed reflective electrochromic displays for paper
and other opaque substrates. ACS Appl Opt Mater 2023;1:578-86. DOI PubMed PMC
97. Andersson Ersman P, Freitag K, Nilsson M, et al. Electrochromic displays screen printed on transparent nanocellulose-based
substrates. Adv Photon Res 2023;4:2200012. DOI
98. Brooke R, Petsagkourakis I, Wijeratne K, Andersson Ersman P. Electrochromic displays manufactured by a combination of vapor
phase polymerization and screen printing. Adv Mater Technol 2022;7:2200054. DOI
99. Brooke R, Petsagkourakis I, Majee S, Olsson O, Dahlin A, Andersson Ersman P. All-printed multilayers and blends of
poly(dioxythiophene) derivatives patterned into flexible electrochromic displays. Macro Mater Eng 2023;308:2200453. DOI
100. Zhang CJ, McKeon L, Kremer MP, et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun
2019;10:1795. DOI PubMed PMC
101. McManus D, Vranic S, Withers F, et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat
Nanotechnol 2017;12:343-50. DOI PubMed
102. Zhang Y, Xu B, Zhao F, et al. Inkjet printing for smart electrochromic devices. FlexMat 2024;1:23-45. DOI

