Page 75 - Read Online
P. 75

Wu et al. Soft Sci 2024;4:29  https://dx.doi.org/10.20517/ss.2024.21            Page 21 of 22

                    nanocrystal ink. Adv Energy Mater 2020;10:2000142.  DOI
               73.       Moon HC, Kim CH, Lodge TP, Frisbie CD. Multicolored, low-power, flexible electrochromic devices based on ion gels. ACS Appl
                    Mater Interfaces 2016;8:6252-60.  DOI  PubMed
               74.       Di Noto V, Lavina S, Giffin GA, Negro E, Scrosati B. Polymer electrolytes: present, past and future. Electrochim Acta 2011;57:4-13.
                    DOI
               75.       Wu W, Fang H, Wu L, Ma H, Wang H. Temperature-dependent electrochromic devices for energy-saving dual-mode displays. ACS
                    Appl Mater Interfaces 2023;15:4113-21.  DOI  PubMed
               76.       Wu C, Hsu C, Huang K, Nien P, Lin J, Ho K. A photoelectrochromic device based on gel electrolyte with a fast switching rate. Sol
                    Energy Mat Sol C 2012;99:148-53.  DOI
               77.       Fang H, Wu L, Ma H, et al. Dual-function biomimetic eyes based on thermally-stable organohydrogel electrolyte. Chem Eng J
                    2022;438:135383.  DOI
               78.       Chen D, Tan H, Xu T, Wang W, Chen H, Zhang J. Micropatterned PEDOT with enhanced electrochromism and electrochemical
                    tunable diffraction. ACS Appl Mater Interfaces 2021;13:58011-8.  DOI  PubMed
               79.       Pietsch M, Schlisske S, Held M, Strobel N, Wieczorek A, Hernandez-sosa G. Biodegradable inkjet-printed electrochromic display for
                    sustainable short-lifecycle electronics. J Mater Chem C 2020;8:16716-24.  DOI
               80.       Thakur VK, Ding G, Ma J, Lee PS, Lu X. Hybrid materials and polymer electrolytes for electrochromic device applications. Adv
                    Mater 2012;24:4071-96.  DOI  PubMed
               81.       Eh ALS, Lu X, Lee PS. Advances in polymer electrolytes for electrochromic applications. In: Mortimer RJ, Rosseinsky DR, Monk
                    PMS, editors. Electrochromic materials and devices. Wiley; 2013. pp. 289-310.  DOI
               82.       Jensen J, Krebs FC. From the bottom up - flexible solid state electrochromic devices. Adv Mater 2014;26:7231-4.  DOI  PubMed
               83.       Poh WC, Eh AL, Wu W, Guo X, Lee PS. Rapidly photocurable solid-state poly(ionic liquid) ionogels for thermally robust and
                    flexible electrochromic devices. Adv Mater 2022;34:e2206952.  DOI  PubMed
               84.       Bai Z, Wu X, Fang R, et al. Divalent viologen cation-based ionogels facilitate reversible intercalation of anions in PProDOT-Me  for
                                                                                                       2
                    flexible electrochromic displays. Adv Funct Mater 2024;34:2312587.  DOI
               85.       Song R, Li G, Zhang Y, Rao B, Xiong S, He G. Novel electrochromic materials based on chalcogenoviologens for smart windows, E-
                    price tag and flexible display with improved reversibility and stability. Chem Eng J 2021;422:130057.  DOI
               86.       Kim J, Myoung J. Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based
                    viologens by multiple patterning. Adv Funct Mater 2019;29:1808911.  DOI
               87.       Gu  C,  Jia  AB,  Zhang  YM,  Zhang  SX.  Emerging  electrochromic  materials  and  devices  for  future  displays.  Chem  Rev
                    2022;122:14679-721.  DOI  PubMed  PMC
               88.       Kim JW, Kim S, Jeong YR, et al. Self-healing strain-responsive electrochromic display based on a multiple crosslinked network
                    hydrogel. Chem Eng J 2022;430:132685.  DOI
               89.       Viñuales A, Alesanco Y, Cabañero G, Sobrado J, Tena-zaera R. Incorporating paper matrix into flexible devices based on liquid
                    electrochromic mixtures: Enhanced robustness, durability and multi-color versatility. Sol Energy Mat Sol C 2017;167:22-7.  DOI
               90.       Gu C, Wang X, Jia A, et al. A strategy of stabilization via active energy-exchange for bistable electrochromic displays. CCS Chem
                    2022;4:2757-67.  DOI
               91.       Lang AW, Österholm AM, Reynolds JR. Paper-based electrochromic devices enabled by nanocellulose-coated substrates. Adv Funct
                    Mater 2019;29:1903487.  DOI
               92.       Li S, Yan J, Li Y, et al. Dynamically transflective multicolor modulation via single metal-dielectric inorganic electrochromic
                    electrode. Giant 2024;17:100229.  DOI
               93.       Moon HC, Lodge TP, Frisbie CD. Solution processable, electrochromic ion gels for sub-1 V, flexible displays on plastic. Chem Mater
                    2015;27:1420-5.  DOI
               94.       Kim J, Kwon D, Myoung J. Rollable and transparent subpixelated electrochromic displays using deformable nanowire electrodes
                    with improved electrochemical and mechanical stability. Chem Eng J 2020;387:124145.  DOI
               95.       Brooke R, Edberg J, Crispin X, Berggren M, Engquist I, Jonsson MP. Greyscale and paper electrochromic polymer displays by UV
                    patterning. Polymers 2019;11:267.  DOI  PubMed  PMC
               96.       Freitag K, Brooke R, Nilsson M, Åhlin J, Beni V, Andersson Ersman P. Screen printed reflective electrochromic displays for paper
                    and other opaque substrates. ACS Appl Opt Mater 2023;1:578-86.  DOI  PubMed  PMC
               97.       Andersson Ersman P, Freitag K, Nilsson M, et al. Electrochromic displays screen printed on transparent nanocellulose-based
                    substrates. Adv Photon Res 2023;4:2200012.  DOI
               98.       Brooke R, Petsagkourakis I, Wijeratne K, Andersson Ersman P. Electrochromic displays manufactured by a combination of vapor
                    phase polymerization and screen printing. Adv Mater Technol 2022;7:2200054.  DOI
               99.       Brooke  R,  Petsagkourakis  I,  Majee  S,  Olsson  O,  Dahlin  A,  Andersson  Ersman  P.  All-printed  multilayers  and  blends  of
                    poly(dioxythiophene) derivatives patterned into flexible electrochromic displays. Macro Mater Eng 2023;308:2200453.  DOI
               100.      Zhang CJ, McKeon L, Kremer MP, et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun
                    2019;10:1795.  DOI  PubMed  PMC
               101.      McManus D, Vranic S, Withers F, et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat
                    Nanotechnol 2017;12:343-50.  DOI  PubMed
               102.      Zhang Y, Xu B, Zhao F, et al. Inkjet printing for smart electrochromic devices. FlexMat 2024;1:23-45.  DOI
   70   71   72   73   74   75   76   77   78   79   80