Page 74 - Read Online
P. 74
Page 20 of 22 Wu et al. Soft Sci 2024;4:29 https://dx.doi.org/10.20517/ss.2024.21
42. Zhu T, Xiong J, Chen J, et al. Flexible electrochromic fiber with rapid color switching and high optical modulation. Nano Res
2023;16:5473-9. DOI
43. Chen X, Lin H, Deng J, et al. Electrochromic fiber-shaped supercapacitors. Adv Mater 2014;26:8126-32. DOI PubMed
44. Kang W, Lin MF, Chen J, Lee PS. Highly transparent conducting nanopaper for solid state foldable electrochromic devices. Small
2016;12:6370-7. DOI PubMed
45. Sinha S, Daniels R, Yassin O, et al. Electrochromic fabric displays from a robust, open-air fabrication technique. Adv Mater Technol
2022;7:2100548. DOI
46. Li K, Zhang Q, Wang H, Li Y. Red, green, blue (RGB) electrochromic fibers for the new smart color change fabrics. ACS Appl Mater
Interfaces 2014;6:13043-50. DOI PubMed
47. Fan H, Li K, Liu X, et al. Continuously processed, long electrochromic fibers with multi-environmental stability. ACS Appl Mater
Interfaces 2020;12:28451-60. DOI PubMed
48. Chou HH, Nguyen A, Chortos A, et al. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled
by tactile sensing. Nat Commun 2015;6:8011. DOI PubMed PMC
49. Yin L, Cao M, Kim KN, et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic
display. Nat Electron 2022;5:694-705. DOI
50. Kim Y, Park C, Im S, Kim JH. Design of intrinsically stretchable and highly conductive polymers for fully stretchable electrochromic
devices. Sci Rep 2020;10:16488. DOI PubMed PMC
51. Matsuhisa N, Niu S, O’Neill SJK, et al. High-frequency and intrinsically stretchable polymer diodes. Nature 2021;600:246-52. DOI
PubMed
52. Cai G, Park S, Cheng X, Eh AL, Lee PS. Inkjet-printed metal oxide nanoparticles on elastomer for strain-adaptive transmissive
electrochromic energy storage systems. Sci Technol Adv Mat 2018;19:759-70. DOI
53. Wu W, Poh WC, Lv J, et al. Self-powered and light-adaptable stretchable electrochromic display. Adv Energy Mater
2023;13:2204103. DOI
54. Yan C, Kang W, Wang J, et al. Stretchable and wearable electrochromic devices. ACS Nano 2014;8:316-22. DOI PubMed
55. Liu Q, Xu Z, Qiu W, et al. Ultraflexible, stretchable and fast-switching electrochromic devices with enhanced cycling stability. RSC
Adv 2018;8:18690-7. DOI PubMed PMC
56. Wu W, Fang H, Ma H, Wu L, Zhang W, Wang H. Boosting transport kinetics of ions and electrons simultaneously by Ti C T
3 2 x
(MXene) addition for enhanced electrochromic performance. Nanomicro Lett 2020;13:20. DOI PubMed PMC
57. Kim DS, Lee YH, Kim JW, Lee H, Jung G, Ha JS. A stretchable array of high-performance electrochromic devices for displaying
skin-attached multi-sensor signals. Chem Eng J 2022;429:132289. DOI
58. Ding Y, Wang M, Mei Z, Diao X. Flexible inorganic all-solid-state electrochromic devices toward visual energy storage and two-
dimensional color tunability. ACS Appl Mater Interfaces 2023;15:15646-56. DOI PubMed
59. Park H, Kim DS, Hong SY, et al. A skin-integrated transparent and stretchable strain sensor with interactive color-changing
electrochromic displays. Nanoscale 2017;9:7631-40. DOI PubMed
60. Santiago-Malagón S, Río-Colín D, Azizkhani H, Aller-Pellitero M, Guirado G, Del Campo FJ. A self-powered skin-patch
electrochromic biosensor. Biosens Bioelectron 2021;175:112879. DOI PubMed
61. Kim DS, Park H, Hong SY, et al. Low power stretchable active-matrix red, green, blue (RGB) electrochromic device array of poly(3-
methylthiophene)/Prussian blue. Appl Surf Sci 2019;471:300-8. DOI
62. Liu G, Wang Z, Wang J, Liu H, Li Z. Employing polyaniline/viologen complementarity to enhance coloration and charge dissipation
in multicolor electrochromic display with wide modulation range. J Colloid Interface Sci 2024;655:493-507. DOI PubMed
63. Zhou F, Liang D, Liu S, Guo Z, Wang M, Zhou G. Water-based additive-free chromic inks for printing of flexible photochromics and
electrochromics. ACS Appl Mater Interfaces 2023;15:49418-26. DOI PubMed
64. Wu C, Chen H, Tan J, et al. Electrochromic conjugated polymers containing benzotriazole and thiophene performing sub-second
2
-1
response time and 916 cm C superb coloration efficiency. Sol Energy Mat Sol C 2023;257:112355. DOI
65. Yin L, Moon J, Sempionatto JR, et al. A passive perspiration biofuel cell: high energy return on investment. Joule 2021;5:1888-904.
DOI
66. Zhang J, Jena SR, Higuchi M. Flexible multicolor rewritable paper coated with metallosupramolecular polymers for electrochromic
printing and natural erasing by humidity. ACS Appl Polym Mater 2023;5:6950-7. DOI
67. Mortimer RJ, Dyer AL, Reynolds JR. Electrochromic organic and polymeric materials for display applications. Displays 2006;27:2-
18. DOI
68. Rao A, Zhang S, Hu J, et al. Fabry-Perot cavity tunable multicolor flexible electrochromic device based on porous filter membrane. J
Alloys Compd 2023;969:172310. DOI
69. Wang Z, Wang X, Cong S, et al. Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot
nanocavities. Nat Commun 2020;11:302. DOI PubMed PMC
70. Chen J, Wang Z, Chen Z, Cong S, Zhao Z. Fabry-Perot cavity-type electrochromic supercapacitors with exceptionally versatile color
tunability. Nano Lett 2020;20:1915-22. DOI PubMed
71. Brooke R, Edberg J, Iandolo D, Berggren M, Crispin X, Engquist I. Controlling the electrochromic properties of conductive polymers
using UV-light. J Mater Chem C 2018;6:4663-70. DOI
72. Zhang L, Chao D, Yang P, et al. Flexible pseudocapacitive electrochromics via inkjet printing of additive-free tungsten oxide

