Page 103 - Read Online
P. 103
Wang et al. Soft Sci 2024;4:32 https://dx.doi.org/10.20517/ss.2024.15 Page 27 of 27
Therm Sci 2018;134:517-29. DOI
83. Gan Y, Wang J, Liang J, Huang Z, Hu M. Development of thermal equivalent circuit model of heat pipe-based thermal management
system for a battery module with cylindrical cells. Appl Therm Eng 2020;164:114523. DOI
84. Zhang C, Xia Z, Wang B, et al. A li-ion battery thermal management system combining a heat pipe and thermoelectric cooler.
Energies 2020;13:841. DOI
85. Jilte RD, Kumar R, Ahmadi MH, Chen L. Battery thermal management system employing phase change material with cell-to-cell air
cooling. Appl Therm Eng 2019;161:114199. DOI
86. Liang J, Gan Y, Li Y, Tan M, Wang J. Thermal and electrochemical performance of a serially connected battery module using a heat
pipe-based thermal management system under different coolant temperatures. Energy 2019;189:116233. DOI
87. Kong D, Peng R, Ping P, Du J, Chen G, Wen J. A novel battery thermal management system coupling with PCM and optimized
controllable liquid cooling for different ambient temperatures. Energy Convers Manag 2020;204:112280. DOI
88. Putra N, Sandi AF, Ariantara B, Abdullah N, Indra Mahlia TM. Performance of beeswax phase change material (PCM) and heat pipe
as passive battery cooling system for electric vehicles. Case Stud Therm Eng 2020;21:100655. DOI
89. Luo D, Wu Z, Yan Y, et al. Performance investigation and design optimization of a battery thermal management system with
thermoelectric coolers and phase change materials. J Clean Prod 2024;434:139834. DOI
90. Lyu Y, Siddique ARM, Gadsden SA, Mahmud S. Experimental investigation of thermoelectric cooling for a new battery pack design
in a copper holder. Results Eng 2021;10:100214. DOI
91. Chang K, Li Y, Hou X, Li X. Numerical study of fuzzy-PID dual-layer coordinated control strategy for high temperature uniformity
of space lithium-ion battery pack based on thermoelectric coolers. J Energy Storage 2022;56:105952. DOI
92. Ding Q, Sun X, Zhu Z, et al. Long-lasting heat dissipation of flexible heat sinks for wearable thermoelectric devices. ACS Appl Mater
Interfaces 2024;16:31228-36. DOI
93. Hong S, Gu Y, Seo JK, et al. Wearable thermoelectrics for personalized thermoregulation. Sci Adv 2019;5:eaaw0536. DOI PubMed
PMC
94. Kim F, Yang SE, Ju H, et al. Direct ink writing of three-dimensional thermoelectric microarchitectures. Nat Electron 2021;4:579-87.
DOI
95. Yuan J, Zhu R. A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator.
Appl Energy 2020;271:115250. DOI
96. Kim F, Kwon B, Eom Y, et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi Te -based inks. Nat
2
3
Energy 2018;3:301-9. DOI
97. Wang Y, Yang L, Shi XL, et al. Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater
2019;31:e1807916. DOI
98. Shi X, Chen H, Hao F, et al. Room-temperature ductile inorganic semiconductor. Nat Mater 2018;17:421-6. DOI
99. Zhang Y, Gao J, Zhu S, et al. Wearable thermoelectric cooler based on a two-layer hydrogel/nickel foam heatsink with two-axis
flexibility. ACS Appl Mater Interfaces 2022;14:15317-23. DOI
100. Wei H, Zhang J, Han Y, Xu D. Soft-covered wearable thermoelectric device for body heat harvesting and on-skin cooling. Appl
Energy 2022;326:119941. DOI
101. Mukaida M, Kirihara K, Ebihara T, Wei Q. Gram-scale polymer-based thermoelectric module for charging Li-ion batteries. Mater
Today Energy 2023;32:101238. DOI

