Page 101 - Read Online
P. 101
Wang et al. Soft Sci 2024;4:32 https://dx.doi.org/10.20517/ss.2024.15 Page 25 of 27
from: https://jestec.taylors.edu.my/Vol%2015%20issue%201%20February%202020/15_1_34.pdf. [Last accessed on 4 Sep 2024]
21. Yang J, Stabler FR. Automotive applications of thermoelectric materials. J Elec Mater 2009;38:1245-51. DOI
22. Choi H, Yun S, Whang K. Development of a temperature-controlled car-seat system utilizing thermoelectric device. Appl Therm Eng
2007;27:2841-9. DOI
23. Xu J, Cai X, Cai S, et al. High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environ
Mater 2023;6:e12450. DOI
24. Zhu J, Wang Y, Huang Y, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation. Nat
Commun 2022;13:2261. DOI PubMed PMC
25. Sun Y, Shi X, Yang Y, et al. Biomass-derived carbon for high-performance batteries: from structure to properties. Adv Funct Mater
2022;32:2201584. DOI
26. Bresser D, Hosoi K, Howell D, et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. J Power
Sources 2018;382:176-8. DOI
27. Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion battery management in electric vehicles. J Power
Sources 2013;226:272-88. DOI
28. Pesaran AA. Battery thermal models for hybrid vehicle simulations. J Power Sources 2002;110:377-82. DOI
29. Yan J, Wang Q, Li K, Sun J. Numerical study on the thermal performance of a composite board in battery thermal management
system. Appl Therm Eng 2016;106:131-40. DOI
30. Feng X, Ren D, He X, Ouyang M. Mitigating thermal runaway of lithium-ion batteries. Joule 2020;4:743-70. DOI
31. Lu M, Zhang X, Ji J, Xu X, Zhang Y. Research progress on power battery cooling technology for electric vehicles. J Energy Storage
2020;27:101155. DOI
32. Alaoui C. Solid-State Thermal management for lithium-ion EV batteries. IEEE Trans Veh Technol 2013;62:98-107. DOI
33. Sait H. Cooling a plate lithium-ion battery using a thermoelectric system and evaluating the geometrical impact on the performance of
heatsink connected to the system. J Energy Storage 2022;52:104692. DOI
34. Zhou G, Li F, Cheng H. Progress in flexible lithium batteries and future prospects. Energy Environ Sci 2014;7:1307-38. DOI
35. Fang Z, Wang J, Wu H, Li Q, Fan S, Wang J. Progress and challenges of flexible lithium ion batteries. J Power Sources
2020;454:227932. DOI
36. Sato N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles. J Power Sources 2001;99:70-7. DOI
37. Liu Y, Yang S, Guo B, Deng C. Numerical analysis and design of thermal management system for lithium ion battery pack using
thermoelectric coolers. Adv Mechan Eng 2014;6:852712. DOI
38. Song W, Bai F, Chen M, Lin S, Feng Z, Li Y. Thermal management of standby battery for outdoor base station based on the
semiconductor thermoelectric device and phase change materials. Appl Therm Eng 2018;137:203-17. DOI
39. Liu X, Zhang CF, Zhou JG, Xiong X, Wang YP. Thermal performance of battery thermal management system using fins to enhance
the combination of thermoelectric Cooler and phase change Material. Appl Energy 2022;322:119503. DOI
40. Buchalik R, Nowak G, Nowak I. Mathematical model of a thermoelectric system based on steady- and rapid-state measurements.
Appl Energy 2021;293:116943. DOI
41. Hunt IA, Zhao Y, Patel Y, Offer J. Surface cooling causes accelerated degradation compared to tab cooling for lithium-ion pouch
cells. J Electrochem Soc 2016;163:A1846-52. DOI
42. Wang T, Tseng K, Zhao J, Wei Z. Thermal investigation of lithium-ion battery module with different cell arrangement structures and
forced air-cooling strategies. Appl Energy 2014;134:229-38. DOI
43. Fan Y, Bao Y, Ling C, Chu Y, Tan X, Yang S. Experimental study on the thermal management performance of air cooling for high
energy density cylindrical lithium-ion batteries. Appl Therm Eng 2019;155:96-109. DOI
44. Idi MM, Karkri M, Abdou Tankari M. A passive thermal management system of Li-ion batteries using PCM composites:
experimental and numerical investigations. Int J Heat Mass Transfer 2021;169:120894. DOI
45. Sahin RC, Gocmen S, Cetkin E. Thermal management system for air-cooled battery packs with flow-disturbing structures. J Power
Sources 2022;551:232214. DOI
46. Baveja R, Bhattacharya J, Panchal S, Fraser R, Fowler M. Predicting temperature distribution of passively balanced battery module
under realistic driving conditions through coupled equivalent circuit method and lumped heat dissipation method. J Energy Storage
2023;70:107967. DOI
47. Rajan JT, Jayapal VS, Krishna M, et al. Analysis of battery thermal management system for electric vehicles using 1-tetradecanol
phase change material. Sustain Energy Technol Assess 2022;51:101943. DOI
48. Sudhakaran S, Terese M, Mohan Y, Thampi AD, Rani S. Influence of various parameters on the cooling performance of battery
thermal management systems based on phase change materials. Appl Therm Eng 2023;222:119936. DOI
49. Hameed MM, Mansor MB, Azau MAM, Alshara AK. Computational design and analysis of LiFePO4 battery thermal management
system (BTMS) using thermoelectric cooling/thermoelectric generator (TEC-TEG) in electric vehicles (EVs). J Energy Storage
2023;72:108394. DOI
50. Kim BR, Nguyen TN, Park CW. Cooling performance of thermal management system for lithium-ion batteries using two types of
cold plate: experiment and MATLAB/Simulink-Simscape simulation. Intl Commun Heat Mass Transfer 2023;145:106816. DOI
51. Liao G, Jiang K, Zhang F, et al. Thermal performance of battery thermal management system coupled with phase change material and
thermoelectric elements. J Energy Storage 2021;43:103217. DOI

