Page 101 - Read Online
P. 101

Wang et al. Soft Sci 2024;4:32  https://dx.doi.org/10.20517/ss.2024.15          Page 25 of 27

                    from: https://jestec.taylors.edu.my/Vol%2015%20issue%201%20February%202020/15_1_34.pdf. [Last accessed on 4 Sep 2024]
               21.       Yang J, Stabler FR. Automotive applications of thermoelectric materials. J Elec Mater 2009;38:1245-51.  DOI
               22.       Choi H, Yun S, Whang K. Development of a temperature-controlled car-seat system utilizing thermoelectric device. Appl Therm Eng
                    2007;27:2841-9.  DOI
               23.       Xu J, Cai X, Cai S, et al. High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environ
                    Mater 2023;6:e12450.  DOI
               24.       Zhu J, Wang Y, Huang Y, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation. Nat
                    Commun 2022;13:2261.  DOI  PubMed  PMC
               25.       Sun Y, Shi X, Yang Y, et al. Biomass-derived carbon for high-performance batteries: from structure to properties. Adv Funct Mater
                    2022;32:2201584.  DOI
               26.       Bresser D, Hosoi K, Howell D, et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. J Power
                    Sources 2018;382:176-8.  DOI
               27.       Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion battery management in electric vehicles. J Power
                    Sources 2013;226:272-88.  DOI
               28.       Pesaran AA. Battery thermal models for hybrid vehicle simulations. J Power Sources 2002;110:377-82.  DOI
               29.       Yan J, Wang Q, Li K, Sun J. Numerical study on the thermal performance of a composite board in battery thermal management
                    system. Appl Therm Eng 2016;106:131-40.  DOI
               30.       Feng X, Ren D, He X, Ouyang M. Mitigating thermal runaway of lithium-ion batteries. Joule 2020;4:743-70.  DOI
               31.       Lu M, Zhang X, Ji J, Xu X, Zhang Y. Research progress on power battery cooling technology for electric vehicles. J Energy Storage
                    2020;27:101155.  DOI
               32.       Alaoui C. Solid-State Thermal management for lithium-ion EV batteries. IEEE Trans Veh Technol 2013;62:98-107.  DOI
               33.       Sait H. Cooling a plate lithium-ion battery using a thermoelectric system and evaluating the geometrical impact on the performance of
                    heatsink connected to the system. J Energy Storage 2022;52:104692.  DOI
               34.       Zhou G, Li F, Cheng H. Progress in flexible lithium batteries and future prospects. Energy Environ Sci 2014;7:1307-38.  DOI
               35.       Fang Z, Wang J, Wu H, Li Q, Fan S, Wang J. Progress and challenges of flexible lithium ion batteries. J Power Sources
                    2020;454:227932.  DOI
               36.       Sato N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles. J Power Sources 2001;99:70-7.  DOI
               37.       Liu Y, Yang S, Guo B, Deng C. Numerical analysis and design of thermal management system for lithium ion battery pack using
                    thermoelectric coolers. Adv Mechan Eng 2014;6:852712.  DOI
               38.       Song W, Bai F, Chen M, Lin S, Feng Z, Li Y. Thermal management of standby battery for outdoor base station based on the
                    semiconductor thermoelectric device and phase change materials. Appl Therm Eng 2018;137:203-17.  DOI
               39.       Liu X, Zhang CF, Zhou JG, Xiong X, Wang YP. Thermal performance of battery thermal management system using fins to enhance
                    the combination of thermoelectric Cooler and phase change Material. Appl Energy 2022;322:119503.  DOI
               40.       Buchalik R, Nowak G, Nowak I. Mathematical model of a thermoelectric system based on steady- and rapid-state measurements.
                    Appl Energy 2021;293:116943.  DOI
               41.       Hunt IA, Zhao Y, Patel Y, Offer J. Surface cooling causes accelerated degradation compared to tab cooling for lithium-ion pouch
                    cells. J Electrochem Soc 2016;163:A1846-52.  DOI
               42.       Wang T, Tseng K, Zhao J, Wei Z. Thermal investigation of lithium-ion battery module with different cell arrangement structures and
                    forced air-cooling strategies. Appl Energy 2014;134:229-38.  DOI
               43.       Fan Y, Bao Y, Ling C, Chu Y, Tan X, Yang S. Experimental study on the thermal management performance of air cooling for high
                    energy density cylindrical lithium-ion batteries. Appl Therm Eng 2019;155:96-109.  DOI
               44.       Idi MM, Karkri M, Abdou Tankari M. A passive thermal management system of Li-ion batteries using PCM composites:
                    experimental and numerical investigations. Int J Heat Mass Transfer 2021;169:120894.  DOI
               45.       Sahin RC, Gocmen S, Cetkin E. Thermal management system for air-cooled battery packs with flow-disturbing structures. J Power
                    Sources 2022;551:232214.  DOI
               46.       Baveja R, Bhattacharya J, Panchal S, Fraser R, Fowler M. Predicting temperature distribution of passively balanced battery module
                    under realistic driving conditions through coupled equivalent circuit method and lumped heat dissipation method. J Energy Storage
                    2023;70:107967.  DOI
               47.       Rajan JT, Jayapal VS, Krishna M, et al. Analysis of battery thermal management system for electric vehicles using 1-tetradecanol
                    phase change material. Sustain Energy Technol Assess 2022;51:101943.  DOI
               48.       Sudhakaran S, Terese M, Mohan Y, Thampi AD, Rani S. Influence of various parameters on the cooling performance of battery
                    thermal management systems based on phase change materials. Appl Therm Eng 2023;222:119936.  DOI
               49.       Hameed MM, Mansor MB, Azau MAM, Alshara AK. Computational design and analysis of LiFePO4 battery thermal management
                    system (BTMS) using thermoelectric cooling/thermoelectric generator (TEC-TEG) in electric vehicles (EVs). J Energy Storage
                    2023;72:108394.  DOI
               50.       Kim BR, Nguyen TN, Park CW. Cooling performance of thermal management system for lithium-ion batteries using two types of
                    cold plate: experiment and MATLAB/Simulink-Simscape simulation. Intl Commun Heat Mass Transfer 2023;145:106816.  DOI
               51.       Liao G, Jiang K, Zhang F, et al. Thermal performance of battery thermal management system coupled with phase change material and
                    thermoelectric elements. J Energy Storage 2021;43:103217.  DOI
   96   97   98   99   100   101   102   103   104   105   106