Page 27 - Read Online
P. 27

Jin et al. Soft Sci 2023;3:8  https://dx.doi.org/10.20517/ss.2022.34            Page 25 of 26

                    2018;3:1800056.  DOI
               149.      Ciui B, Martin A, Mishra RK, et al. Chemical sensing at the robot fingertips: toward automated taste discrimination in food samples.
                    ACS Sens 2018;3:2375-84.  DOI  PubMed
               150.      Chitta S, Sturm J, Piccoli M, Burgard W. Tactile sensing for mobile manipulation. IEEE Trans Robot 2011;27:558-68.  DOI
               151.      Xia Z, Deng Z, Fang B, Yang Y, Sun F. A review on sensory perception for dexterous robotic manipulation. Int J Adv Robot Syst
                    2022;19:172988062210959.  DOI
               152.      Guo  ZH,  Wang  HL,  Shao  J,  et  al.  Bioinspired  soft  electroreceptors  for  artificial  precontact  somatosensation.  Sci  Adv
                    2022;8:eabo5201.  DOI  PubMed  PMC
               153.      Ham J, Han AK, Cutkosky MR, Bao Z. UV-laser-machined stretchable multi-modal sensor network for soft robot interaction. NPJ
                    Flex Electron 2022;6:94.  DOI
               154.      Cheng Y, Su CZ, Jia YY, Xi N. Data correlation approach for slippage detection in robotic manipulations using tactile sensor array.
                    In Proceedings of the IROS 2015: IEEE/RSJ International Conference on Intelligent Robots and Systems; 28 September-3 October
                    2015; Hamburg, Germany; pp. 2717-22.  DOI
               155.      James JW, Pestell N, Lepora NF. Slip detection with a biomimetic tactile sensor. IEEE Robot Autom Lett 2018;3:3340-6.  DOI
               156.      Van Wyk K, Falco J. Calibration and analysis of tactile sensors as slip detectors. In Proceedings of the ICRA 2018: IEEE
                    International Conference on Robotics and Automation; 21-25 May 2018; Brisbane, Australia; pp. 2744-51.  DOI
               157.      Su Z, Hausman K, Chebotar Y, et al. Force estimation and slip detection/classification for grip control using a biomimetic tactile
                    sensor. In Proceedings of the Humanoids 2015: IEEE-RAS International Conference on Humanoid Robots; 3-5 November 2015;
                    Seoul, Korea; pp. 297-303.  DOI
               158.      Bhattacharjee T, Rehg JM, Kemp CC. Inferring object properties with a tactile-sensing array given varying joint stiffness and
                    velocity. Int J Human Robot 2018;15:1750024.  DOI
               159.      Meier M, Walck G, Haschke R, Ritter HJ. Distinguishing sliding from slipping during object pushing. In Proceedings of the IROS
                    2016: IEEE/RSJ International Conference on Intelligent Robots and Systems; 9-14 October 2016; Daejeon, Korea; pp. 5579-84.  DOI
               160.      Hogan FR, Ballester J, Dong SY, Rodriguez A. Tactile dexterity: manipulation primitives with tactile feedback. In Proceedings of the
                    ICRA 2020: IEEE International Conference on Robotics and Automation; 31 May-31 August 2020; Paris, France; pp. 8863-9.  DOI
               161.      Hellebrekers T, Zhang K, Veloso M, Kroemer O, Majidi C. Localization and force-feedback with soft magnetic stickers for precise
                    robot manipulation. In Proceedings of the IROS 2020: IEEE/RSJ International Conference on Intelligent Robots and Systems; 25-29
                    October 2020; Las Vegas, Nevada, USA; pp. 8867-74.  DOI
               162.      Kappler D, Pastort P, Kalakrishnant M, Wuthrich M, Schaal S. Data-driven online decision making for autonomous manipulation.
                    Robot Sci Syst 2015.  DOI
               163.      Hoffmann H, Chen Z, Earl D, Mitchell D, Salemi B, Sinapov J. Adaptive robotic tool use under variable grasps. Robot Auton Syst
                    2014;62:833-46.  DOI
               164.      Zhang K, Sharma M, Veloso M, Kroemer O. Leveraging multimodal haptic sensory data for robust cutting. In Proceedings of the
                    Humanoids 2019: IEEE-RAS 19th International Conference on Humanoid Robots; 15-17 October 2019; Toronto, Ontario, Canada;
                    pp. 409-16.  DOI
               165.      Ding H, Yang X, Zheng N, Li M, Lai Y, Wu H. Tri-Co robot: a Chinese robotic research initiative for enhanced robot interaction
                    capabilities. Natl Sci Rev 2018;5:799-801.  DOI
               166.      Wei P, Yang X, Cao Z, et al. Flexible and stretchable electronic skin with high durability and shock resistance via embedded 3D
                    printing technology for human activity monitoring and personal healthcare. Adv Mater Technol 2019;4:1900315.  DOI
               167.      Webb RC, Bonifas AP, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human
                    skin. Nat Mater 2013;12:938-44.  DOI  PubMed  PMC
               168.      Guo H, Lan C, Zhou Z, Sun P, Wei D, Li C. Transparent, flexible, and stretchable WS  based humidity sensors for electronic skin.
                                                                             2
                    Nanoscale 2017;9:6246-53.  DOI  PubMed
               169.      Li Z, Zheng Q, Wang ZL, Li Z. Nanogenerator-based self-powered sensors for wearable and implantable electronics. Research
                    2020;2020:8710686.  DOI  PubMed  PMC
               170.      Liu  Z,  Ma  Y,  Ouyang  H,  et  al.  Transcatheter  self-powered  ultrasensitive  endocardial  pressure  sensor.  Adv  Funct  Mater
                    2019;29:1807560.  DOI
               171.      Suzuki K, Yataka K, Okumiya Y, et al. Rapid-response, widely stretchable sensor of aligned MWCNT/elastomer composites for
                    human motion detection. ACS Sens 2016;1:817-25.  DOI
               172.      Lin R, Kim HJ, Achavananthadith S, et al. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat
                    Commun 2020;11:444.  DOI  PubMed  PMC
               173.      Wong TH, Yiu CK, Zhou J, et al. Tattoo-like epidermal electronics as skin sensors for human machine interfaces. Soft Sci 2021;1:10.
                    DOI
               174.      Su M, Li F, Chen S, et al. Nanoparticle based curve arrays for multirecognition flexible electronics. Adv Mater 2016;28:1369-74.
                    DOI  PubMed
               175.      Yan Z, Pan T, Wang D, et al. Stretchable micromotion sensor with enhanced sensitivity using serpentine layout. ACS Appl Mater
                    Interfaces 2019;11:12261-71.  DOI  PubMed
               176.      Pyo S, Lee J, Kim W, Jo E, Kim J. Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in
                    ultrawide pressure range. Adv Funct Mater 2019;29:1902484.  DOI
   22   23   24   25   26   27   28   29   30   31   32