Page 27 - Read Online
P. 27
Jin et al. Soft Sci 2023;3:8 https://dx.doi.org/10.20517/ss.2022.34 Page 25 of 26
2018;3:1800056. DOI
149. Ciui B, Martin A, Mishra RK, et al. Chemical sensing at the robot fingertips: toward automated taste discrimination in food samples.
ACS Sens 2018;3:2375-84. DOI PubMed
150. Chitta S, Sturm J, Piccoli M, Burgard W. Tactile sensing for mobile manipulation. IEEE Trans Robot 2011;27:558-68. DOI
151. Xia Z, Deng Z, Fang B, Yang Y, Sun F. A review on sensory perception for dexterous robotic manipulation. Int J Adv Robot Syst
2022;19:172988062210959. DOI
152. Guo ZH, Wang HL, Shao J, et al. Bioinspired soft electroreceptors for artificial precontact somatosensation. Sci Adv
2022;8:eabo5201. DOI PubMed PMC
153. Ham J, Han AK, Cutkosky MR, Bao Z. UV-laser-machined stretchable multi-modal sensor network for soft robot interaction. NPJ
Flex Electron 2022;6:94. DOI
154. Cheng Y, Su CZ, Jia YY, Xi N. Data correlation approach for slippage detection in robotic manipulations using tactile sensor array.
In Proceedings of the IROS 2015: IEEE/RSJ International Conference on Intelligent Robots and Systems; 28 September-3 October
2015; Hamburg, Germany; pp. 2717-22. DOI
155. James JW, Pestell N, Lepora NF. Slip detection with a biomimetic tactile sensor. IEEE Robot Autom Lett 2018;3:3340-6. DOI
156. Van Wyk K, Falco J. Calibration and analysis of tactile sensors as slip detectors. In Proceedings of the ICRA 2018: IEEE
International Conference on Robotics and Automation; 21-25 May 2018; Brisbane, Australia; pp. 2744-51. DOI
157. Su Z, Hausman K, Chebotar Y, et al. Force estimation and slip detection/classification for grip control using a biomimetic tactile
sensor. In Proceedings of the Humanoids 2015: IEEE-RAS International Conference on Humanoid Robots; 3-5 November 2015;
Seoul, Korea; pp. 297-303. DOI
158. Bhattacharjee T, Rehg JM, Kemp CC. Inferring object properties with a tactile-sensing array given varying joint stiffness and
velocity. Int J Human Robot 2018;15:1750024. DOI
159. Meier M, Walck G, Haschke R, Ritter HJ. Distinguishing sliding from slipping during object pushing. In Proceedings of the IROS
2016: IEEE/RSJ International Conference on Intelligent Robots and Systems; 9-14 October 2016; Daejeon, Korea; pp. 5579-84. DOI
160. Hogan FR, Ballester J, Dong SY, Rodriguez A. Tactile dexterity: manipulation primitives with tactile feedback. In Proceedings of the
ICRA 2020: IEEE International Conference on Robotics and Automation; 31 May-31 August 2020; Paris, France; pp. 8863-9. DOI
161. Hellebrekers T, Zhang K, Veloso M, Kroemer O, Majidi C. Localization and force-feedback with soft magnetic stickers for precise
robot manipulation. In Proceedings of the IROS 2020: IEEE/RSJ International Conference on Intelligent Robots and Systems; 25-29
October 2020; Las Vegas, Nevada, USA; pp. 8867-74. DOI
162. Kappler D, Pastort P, Kalakrishnant M, Wuthrich M, Schaal S. Data-driven online decision making for autonomous manipulation.
Robot Sci Syst 2015. DOI
163. Hoffmann H, Chen Z, Earl D, Mitchell D, Salemi B, Sinapov J. Adaptive robotic tool use under variable grasps. Robot Auton Syst
2014;62:833-46. DOI
164. Zhang K, Sharma M, Veloso M, Kroemer O. Leveraging multimodal haptic sensory data for robust cutting. In Proceedings of the
Humanoids 2019: IEEE-RAS 19th International Conference on Humanoid Robots; 15-17 October 2019; Toronto, Ontario, Canada;
pp. 409-16. DOI
165. Ding H, Yang X, Zheng N, Li M, Lai Y, Wu H. Tri-Co robot: a Chinese robotic research initiative for enhanced robot interaction
capabilities. Natl Sci Rev 2018;5:799-801. DOI
166. Wei P, Yang X, Cao Z, et al. Flexible and stretchable electronic skin with high durability and shock resistance via embedded 3D
printing technology for human activity monitoring and personal healthcare. Adv Mater Technol 2019;4:1900315. DOI
167. Webb RC, Bonifas AP, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human
skin. Nat Mater 2013;12:938-44. DOI PubMed PMC
168. Guo H, Lan C, Zhou Z, Sun P, Wei D, Li C. Transparent, flexible, and stretchable WS based humidity sensors for electronic skin.
2
Nanoscale 2017;9:6246-53. DOI PubMed
169. Li Z, Zheng Q, Wang ZL, Li Z. Nanogenerator-based self-powered sensors for wearable and implantable electronics. Research
2020;2020:8710686. DOI PubMed PMC
170. Liu Z, Ma Y, Ouyang H, et al. Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv Funct Mater
2019;29:1807560. DOI
171. Suzuki K, Yataka K, Okumiya Y, et al. Rapid-response, widely stretchable sensor of aligned MWCNT/elastomer composites for
human motion detection. ACS Sens 2016;1:817-25. DOI
172. Lin R, Kim HJ, Achavananthadith S, et al. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat
Commun 2020;11:444. DOI PubMed PMC
173. Wong TH, Yiu CK, Zhou J, et al. Tattoo-like epidermal electronics as skin sensors for human machine interfaces. Soft Sci 2021;1:10.
DOI
174. Su M, Li F, Chen S, et al. Nanoparticle based curve arrays for multirecognition flexible electronics. Adv Mater 2016;28:1369-74.
DOI PubMed
175. Yan Z, Pan T, Wang D, et al. Stretchable micromotion sensor with enhanced sensitivity using serpentine layout. ACS Appl Mater
Interfaces 2019;11:12261-71. DOI PubMed
176. Pyo S, Lee J, Kim W, Jo E, Kim J. Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in
ultrawide pressure range. Adv Funct Mater 2019;29:1902484. DOI

