Page 26 - Read Online
P. 26
Page 24 of 26 Jin et al. Soft Sci 2023;3:8 https://dx.doi.org/10.20517/ss.2022.34
121. Ho DH, Sun Q, Kim SY, Han JT, Kim DH, Cho JH. Stretchable and multimodal all graphene electronic skin. Adv Mater
2016;28:2601-8. DOI PubMed
122. Hua Q, Sun J, Liu H, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat
Commun 2018;9:244. DOI PubMed PMC
123. Rashid M, Khan MA, Alhaisoni M, et al. A sustainable deep learning framework for object recognition using multi-layers deep
features fusion and selection. Sustainability 2020;12:5037. DOI
124. Wang Y, Chen J, Mei D. Flexible tactile sensor array for slippage and grooved surface recognition in sliding movement.
Micromachines 2019;10:579. DOI PubMed PMC
125. Cao G, Zhou Y, Bollegala D, Luo S. Spatio-temporal attention model for tactile texture recognition. In Proceedings of the IROS
2020: IEEE/RSJ International Conference on Intelligent Robots and Systems; 25-29 October 2020; Las Vegas, Nevada, USA; pp.
9896-902. DOI
126. Drimus A, Kootstra G, Bilberg A, Kragic D. Design of a flexible tactile sensor for classification of rigid and deformable objects.
Robot Auton Syst 2014;62:3-15. DOI
127. Cui Z, Wang W, Guo L, et al. Haptically quantifying young’s modulus of soft materials using a self-locked stretchable strain sensor.
Adv Mater 2022;34:e2104078. DOI PubMed
128. Kerr E, McGinnity TM, Coleman S. Material classification based on thermal properties - a robot and human evaluation. In
Proceedings of the ROBIO 2013: IEEE International Conference on Robotics and Biomimetics; 12-14 December 2013; Shenzhen,
China; pp.1048-53. DOI
129. Hattori Y, Falgout L, Lee W, et al. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound
healing. Adv Healthc Mater 2014;3:1597-607. DOI PubMed PMC
130. Gao W, Emaminejad S, Nyein HYY, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.
Nature 2016;529:509-14. DOI PubMed PMC
131. Seok D, Kim YB, Kim U, Lee SY, Choi HR. Compensation of environmental influences on sensorized-forceps for practical surgical
tasks. IEEE Robot Autom Lett 2019;4:2031-7. DOI
132. Dai Y, Gao S. A flexible multi-functional smart skin for force, touch position, proximity, and humidity sensing for humanoid robots.
IEEE Sensors J 2021;21:26355-63. DOI
133. Kanoulas D, Lee J, Caldwell DG, Tsagarakis NG. Center-of-mass-based grasp pose adaptation using 3D range and force/torque
sensing. Int J Human Robot 2018;15:1850013. DOI
134. McGovern S, Xiao J. Learning and predicting center of mass through manipulation and torque sensing. In Proceedings of the ICMRE
2022: 8th International Conference on Mechatronics and Robotics Engineering; 10-12 February 2022; Munich, Germany; pp. 60-6.
DOI
135. Yi ZK, Calandra R, Veiga F et al. Active tactile object exploration with gaussian processes. In Proceedings of the IROS 2016: IEEE/
RSJ International Conference on Intelligent Robots and Systems; 9-14 October 2016; Daejeon, Korea; pp. 4925-30. DOI
136. Lee WY, Huang MB, Huang HP. Learning robot tactile sensing of object for shape recognition using multi-fingered robot hands. In
Proceedings of the RO-MAN 2017: IEEE International Symposium on Robot and Human Interactive Communication; 28 August-1
September 2017; Lisbon, Portugal; pp.1311-6. DOI
137. Luo S, Mou W, Althoefer K, Liu H. iCLAP: shape recognition by combining proprioception and touch sensing. Auton Robot
2019;43:993-1004. DOI
138. Murali PK, Dutta A, Gentner M, Burdet E, Dahiya R, Kaboli M. Active visuo-tactile interactive robotic perception for accurate object
pose estimation in dense clutter. IEEE Robot Autom Lett 2022;7:4686-93. DOI
139. Dikhale S, Patel K, Dhingra D, et al. VisuoTactile 6D pose estimation of an in-hand object using vision and tactile sensor data. IEEE
Robot Autom Lett 2022;7:2148-55. DOI
140. Zhao D, Sun F, Wang Z, Zhou Q. A novel accurate positioning method for object pose estimation in robotic manipulation based on
vision and tactile sensors. Int J Adv Manuf Technol 2021;116:2999-3010. DOI
141. Saal HP, Ting JA, Vijayakumar S. Active estimation of object dynamics parameters with tactile sensors. In Proceedings of the IROS
2010: IEEE/RSJ International Conference on Intelligent Robots and Systems; 18-22 October 2010; Taipei, Taiwan; pp. 916-21. DOI
142. Miyamoto T, Sasaki H, Matsubara T. Exploiting visual-outer shape for tactile-inner shape estimation of objects covered with soft
materials. IEEE Robot Autom Lett 2020;5:6278-85. DOI
143. Chun S, Son W, Kim H, Lim SK, Pang C, Choi C. Self-powered pressure- and vibration-sensitive tactile sensors for learning
technique-based neural finger skin. Nano Lett 2019;19:3305-12. DOI PubMed
144. Yeo JC, Liu Z, Zhang Z, Zhang P, Wang Z, Lim CT. Wearable mechanotransduced tactile sensor for haptic perception. Adv Mater
Technol 2017;2:1700006. DOI
145. Chun S, Hwang I, Son W, Chang JH, Park W. Recognition, classification, and prediction of the tactile sense. Nanoscale
2018;10:10545-53. DOI PubMed
146. Qiu Y, Sun S, Wang X, et al. Nondestructive identification of softness via bioinspired multisensory electronic skins integrated
on a robotic hand. NPJ Flex Electron 2022;6:45. DOI
147. Zou Q, Yang F, Wang Y. Highly sensitive flexible modulus sensor for softness perception and clinical application. J Micromech
Microeng 2022;32:035004. DOI
148. Zhao S, Zhu R. A smart artificial finger with multisensations of matter, temperature, and proximity. Adv Mater Technol

