Page 24 - Read Online
P. 24

Page 22 of 26                              Jin et al. Soft Sci 2023;3:8  https://dx.doi.org/10.20517/ss.2022.34

                    microstructured graphene. Nanoscale 2018;10:7387-95.  DOI  PubMed
               61.       Qin  J,  Yin  LJ,  Hao  YN,  et  al.  Flexible  and  stretchable  capacitive  sensors  with  different  microstructures.  Adv  Mater
                    2021;33:e2008267.  DOI  PubMed
               62.       Viry L, Levi A, Totaro M, et al. Flexible three-axial force sensor for soft and highly sensitive artificial touch. Adv Mater
                    2014;26:2659-64.  DOI  PubMed  PMC
               63.       Wan Y, Wang Y, Guo CF. Recent progresses on flexible tactile sensors. Mater Today Phys 2017;1:61-73.  DOI
               64.       Pan M, Yuan C, Liang X, Zou J, Zhang Y, Bowen C. Triboelectric and piezoelectric nanogenerators for future soft robots and
                    machines. iScience 2020;23:101682.  DOI  PubMed  PMC
               65.       Wu W, Wen X, Wang ZL. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile
                    imaging. Science 2013;340:952-7.  DOI  PubMed
               66.       Yan Y, Hu Z, Shen Y, Pan J. Surface texture recognition by deep learning-enhanced tactile sensing. Adv Intell Syst 2022;4:2100076.
                    DOI
               67.       Ge J, Wang X, Drack M, et al. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat Commun
                    2019;10:4405.  DOI  PubMed  PMC
               68.       Kawasetsu T, Horii T, Ishihara H, Asada M. Flexible tri-axis tactile sensor using spiral inductor and magnetorheological elastomer.
                    IEEE Sensors J 2018;18:5834-41.  DOI
               69.       Wang H, de Boer G, Kow J, et al. Design methodology for magnetic field-based soft tri-axis tactile sensors. Sensors 2016;16:1356.
                    DOI  PubMed  PMC
               70.       Jiang C, Zhang Z, Pan J, Wang Y, Zhang L, Tong L. Finger-skin-inspired flexible optical sensor for force sensing and slip detection
                    in robotic grasping. Adv Mater Technol 2021;6:2100285.  DOI
               71.       D’Abbraccio J, Aliperta A, Oddo CM et al. Design and development of large-area fbg-based sensing skin for collaborative robotics.
                    In Proceedings of the METROIND4.0&IOT 2019: IEEE International Workshop on Metrology for Industry 4.0 and Internet of
                    Things; 04-06 June 2019; Naples, Italy; pp.410-3.  DOI
               72.       Wang C, Qi B, Lin M, et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat
                    Biomed Eng 2021;5:749-58.  DOI  PubMed
               73.       Deng W, Deng L, Hu Y, Zhang Y, Chen G. Thermoelectric and mechanical performances of ionic liquid-modulated PEDOT:PSS/
                    SWCNT composites at high temperatures. Soft Sci 2022;1:14.  DOI
               74.       Park C, Kim MS, Kim HH, et al. Stretchable conductive nanocomposites and their applications in wearable devices. Appl Phys Rev
                    2022;9:021312.  DOI
               75.       Wang X, Dong L, Zhang H, Yu R, Pan C, Wang ZL. Recent progress in electronic skin. Adv Sci 2015;2:1500169.  DOI
               76.       Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013;499:458-
                    63.  DOI  PubMed
               77.       Tien NT, Jeon S, Kim DI, et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv Mater
                    2014;26:796-804.  DOI  PubMed
               78.       Lipomi DJ, Vosgueritchian M, Tee BC, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon
                    nanotubes. Nat Nanotechnol 2011;6:788-92.  DOI  PubMed
               79.       Lee JH, Heo JS, Kim YJ, et al. A behavior-learned cross-reactive sensor matrix for intelligent skin perception. Adv Mater
                    2020;32:e2000969.  DOI  PubMed
               80.       Ruth SRA, Beker L, Tran H, Feig VR, Matsuhisa N, Bao Z. Rational design of capacitive pressure sensors based on pyramidal
                    microstructures for specialized monitoring of biosignals. Adv Funct Mater 2020;30:1903100.  DOI
               81.       Lee Y, Myoung J, Cho S, et al. Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins. ACS Nano
                    2021;15:1795-804.  DOI  PubMed
               82.       Yang J, Luo S, Zhou X, et al. Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene
                    electrodes. ACS Appl Mater Interfaces 2019;11:14997-5006.  DOI  PubMed
               83.       Liu W, Liu N, Yue Y, et al. Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled
                    graphene film. Small 2018;14:e1704149.  DOI  PubMed
               84.       Wang Y, Chen Z, Mei D, Zhu L, Wang S, Fu X. Highly sensitive and flexible tactile sensor with truncated pyramid-shaped porous
                    graphene/silicone rubber composites for human motion detection. Compos Sci Technol 2022;217:109078.  DOI
               85.       Ha M, Lim S, Cho S, et al. Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and
                    highly sensitive triboelectric sensors. ACS Nano 2018;12:3964-74.  DOI  PubMed
               86.       Wu Y, Liu Y, Zhou Y, et al. A skin-inspired tactile sensor for smart prosthetics. Sci Robot 2018;3:eaat0429.  DOI  PubMed
               87.       Pan J, Jiang C, Zhang Z, Zhang L, Wang X, Tong L. Flexible liquid-filled fiber adapter enabled wearable optical sensors. Adv Mater
                    Technol 2020;5:2000079.  DOI
               88.       Zhu L, Wang Y, Mei D, Ding W, Jiang C, Lu Y. Fully elastomeric fingerprint-shaped electronic skin based on tunable patterned
                    graphene/silver nanocomposites. ACS Appl Mater Interfaces 2020;12:31725-37.  DOI  PubMed
               89.       Xiong J, Chen J, Lee PS. Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv Mater
                    2021;33:e2002640.  DOI  PubMed
               90.       Okatani T, Takahashi H, Noda K, Takahata T, Matsumoto K, Shimoyama I. A tactile sensor using piezoresistive beams for detection
                    of the coefficient of static friction. Sensors 2016;16:718.  DOI  PubMed  PMC
   19   20   21   22   23   24   25   26   27   28   29