Page 24 - Read Online
P. 24
Page 22 of 26 Jin et al. Soft Sci 2023;3:8 https://dx.doi.org/10.20517/ss.2022.34
microstructured graphene. Nanoscale 2018;10:7387-95. DOI PubMed
61. Qin J, Yin LJ, Hao YN, et al. Flexible and stretchable capacitive sensors with different microstructures. Adv Mater
2021;33:e2008267. DOI PubMed
62. Viry L, Levi A, Totaro M, et al. Flexible three-axial force sensor for soft and highly sensitive artificial touch. Adv Mater
2014;26:2659-64. DOI PubMed PMC
63. Wan Y, Wang Y, Guo CF. Recent progresses on flexible tactile sensors. Mater Today Phys 2017;1:61-73. DOI
64. Pan M, Yuan C, Liang X, Zou J, Zhang Y, Bowen C. Triboelectric and piezoelectric nanogenerators for future soft robots and
machines. iScience 2020;23:101682. DOI PubMed PMC
65. Wu W, Wen X, Wang ZL. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile
imaging. Science 2013;340:952-7. DOI PubMed
66. Yan Y, Hu Z, Shen Y, Pan J. Surface texture recognition by deep learning-enhanced tactile sensing. Adv Intell Syst 2022;4:2100076.
DOI
67. Ge J, Wang X, Drack M, et al. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat Commun
2019;10:4405. DOI PubMed PMC
68. Kawasetsu T, Horii T, Ishihara H, Asada M. Flexible tri-axis tactile sensor using spiral inductor and magnetorheological elastomer.
IEEE Sensors J 2018;18:5834-41. DOI
69. Wang H, de Boer G, Kow J, et al. Design methodology for magnetic field-based soft tri-axis tactile sensors. Sensors 2016;16:1356.
DOI PubMed PMC
70. Jiang C, Zhang Z, Pan J, Wang Y, Zhang L, Tong L. Finger-skin-inspired flexible optical sensor for force sensing and slip detection
in robotic grasping. Adv Mater Technol 2021;6:2100285. DOI
71. D’Abbraccio J, Aliperta A, Oddo CM et al. Design and development of large-area fbg-based sensing skin for collaborative robotics.
In Proceedings of the METROIND4.0&IOT 2019: IEEE International Workshop on Metrology for Industry 4.0 and Internet of
Things; 04-06 June 2019; Naples, Italy; pp.410-3. DOI
72. Wang C, Qi B, Lin M, et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat
Biomed Eng 2021;5:749-58. DOI PubMed
73. Deng W, Deng L, Hu Y, Zhang Y, Chen G. Thermoelectric and mechanical performances of ionic liquid-modulated PEDOT:PSS/
SWCNT composites at high temperatures. Soft Sci 2022;1:14. DOI
74. Park C, Kim MS, Kim HH, et al. Stretchable conductive nanocomposites and their applications in wearable devices. Appl Phys Rev
2022;9:021312. DOI
75. Wang X, Dong L, Zhang H, Yu R, Pan C, Wang ZL. Recent progress in electronic skin. Adv Sci 2015;2:1500169. DOI
76. Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013;499:458-
63. DOI PubMed
77. Tien NT, Jeon S, Kim DI, et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv Mater
2014;26:796-804. DOI PubMed
78. Lipomi DJ, Vosgueritchian M, Tee BC, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon
nanotubes. Nat Nanotechnol 2011;6:788-92. DOI PubMed
79. Lee JH, Heo JS, Kim YJ, et al. A behavior-learned cross-reactive sensor matrix for intelligent skin perception. Adv Mater
2020;32:e2000969. DOI PubMed
80. Ruth SRA, Beker L, Tran H, Feig VR, Matsuhisa N, Bao Z. Rational design of capacitive pressure sensors based on pyramidal
microstructures for specialized monitoring of biosignals. Adv Funct Mater 2020;30:1903100. DOI
81. Lee Y, Myoung J, Cho S, et al. Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins. ACS Nano
2021;15:1795-804. DOI PubMed
82. Yang J, Luo S, Zhou X, et al. Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene
electrodes. ACS Appl Mater Interfaces 2019;11:14997-5006. DOI PubMed
83. Liu W, Liu N, Yue Y, et al. Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled
graphene film. Small 2018;14:e1704149. DOI PubMed
84. Wang Y, Chen Z, Mei D, Zhu L, Wang S, Fu X. Highly sensitive and flexible tactile sensor with truncated pyramid-shaped porous
graphene/silicone rubber composites for human motion detection. Compos Sci Technol 2022;217:109078. DOI
85. Ha M, Lim S, Cho S, et al. Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and
highly sensitive triboelectric sensors. ACS Nano 2018;12:3964-74. DOI PubMed
86. Wu Y, Liu Y, Zhou Y, et al. A skin-inspired tactile sensor for smart prosthetics. Sci Robot 2018;3:eaat0429. DOI PubMed
87. Pan J, Jiang C, Zhang Z, Zhang L, Wang X, Tong L. Flexible liquid-filled fiber adapter enabled wearable optical sensors. Adv Mater
Technol 2020;5:2000079. DOI
88. Zhu L, Wang Y, Mei D, Ding W, Jiang C, Lu Y. Fully elastomeric fingerprint-shaped electronic skin based on tunable patterned
graphene/silver nanocomposites. ACS Appl Mater Interfaces 2020;12:31725-37. DOI PubMed
89. Xiong J, Chen J, Lee PS. Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv Mater
2021;33:e2002640. DOI PubMed
90. Okatani T, Takahashi H, Noda K, Takahata T, Matsumoto K, Shimoyama I. A tactile sensor using piezoresistive beams for detection
of the coefficient of static friction. Sensors 2016;16:718. DOI PubMed PMC

