Page 23 - Read Online
P. 23
Jin et al. Soft Sci 2023;3:8 https://dx.doi.org/10.20517/ss.2022.34 Page 21 of 26
2021;6:eabc8801. DOI PubMed
31. Soni M, Dahiya R. Soft eSkin: distributed touch sensing with harmonized energy and computing. Philos Trans A Math Phys Eng Sci
2020;378:20190156. DOI PubMed PMC
32. Lee Y, Park J, Cho S, et al. Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally
broad pressure range. ACS Nano 2018;12:4045-54. DOI PubMed
33. Jiang X, Chen R, Zhu H. Recent progress in wearable tactile sensors combined with algorithms based on machine learning and signal
processing. APL Mater 2021;9:030906. DOI
34. Sundaram S, Kellnhofer P, Li Y, Zhu JY, Torralba A, Matusik W. Learning the signatures of the human grasp using a scalable tactile
glove. Nature 2019;569:698-702. DOI PubMed
35. Pressure profile systems®. The TactArray - pressure mapping sensor pads. Available from: https://pressureprofile.com/sensors/
tactarray [Last accessed on 8 Mar 2023].
36. Iwata H, Sugano S. Design of human symbiotic robot TWENDY-ONE. In Proceedings of the ICRA 2009: IEEE International
Conference on Robotics and Automation; 12-17 May 2009; Kobe, Japan; p. 3294. DOI
37. Someya T, Sekitani T, Iba S, Kato Y, Kawaguchi H, Sakurai T. A large-area, flexible pressure sensor matrix with organic field-effect
transistors for artificial skin applications. Proc Natl Acad Sci USA 2004;101:9966-70. DOI PubMed PMC
38. SynTouch Inc. SynTouch® BioTac® Tactile sensor. Available from: https://syntouchinc.com/sensor-documents/ [Last accessed on 8
Mar 2023].
39. Fishel JA, Loeb GE. Bayesian exploration for intelligent identification of textures. Front Neurorobot 2012;6:4. DOI
40. Su Z, Kroemer O, Loeb GE, Sukhatme GS, Schaal S. Learning manipulation graphs from demonstrations using multimodal sensory
signals. In Proceedings of the ICRA 2018: IEEE International Conference on Robotics and Automation; 21-25 May 2018; Brisbane,
QLD, Australia; pp. 2758-65. DOI
41. Yuan W, Dong S, Adelson EH. GelSight: High-resolution robot tactile sensors for estimating geometry and force. Sensors
2017;17:2762. DOI PubMed PMC
42. Li R, Platt R, Yuan WZ, et al. Localization and manipulation of small parts using GelSight tactile sensing. In Proceedings of the
IROS 2014: IEEE/RSJ International Conference on Intelligent Robots and Systems; 14-18 September 2014; Chicago, IL, USA; pp.
3988-93. DOI
43. Yuan W, Zhu C, Owens A, Srinivasan MA, Adelson EH. Shape-independent hardness estimation using deep learning and a GelSight
tactile sensor. In Proceedings of the ICRA 2017: IEEE International Conference on Robotics and Automation; 29 May-3 June 2017;
Singapore; pp. 951-8. DOI
44. Mannsfeld SC, Tee BC, Stoltenberg RM, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric
layers. Nat Mater 2010;9:859-64. DOI PubMed
45. OnRobot. OMD-20-SE-40N DATASHEET. Available from: https://www.g4.com.tw/userfiles/files/Datasheet/
onrobot_3d_force_sensor_omd_20_se_40n.pdf [Last accessed on 8 Mar 2023].
46. Yao KP, Kaboli M, Cheng G. Tactile-based object center of mass exploration and discrimination. In Proceedings of the humanoids
2017: IEEE-RAS 17th International Conference on Humanoid Robotics; 15-17 November 2017; Birmingham, UK; pp.876-81. DOI
47. Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science 2011;333:838-43. DOI
48. Tenzer Y, Jentoft LP, Howe RD. The feel of MEMS barometers: inexpensive and easily customized tactile array sensors. IEEE Robot
Automat Mag 2014;21:89-95. DOI
49. Ades C, Gonzalez I, AlSaidi M, et al. Robotic finger force sensor fabrication and evaluation through a glove. Proc Fla Conf Recent
Adv Robot 2018;2018:60-65. PubMed PMC
50. Lin L, Xie Y, Wang S, et al. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile
imaging. ACS Nano 2013;7:8266-74. DOI PubMed
51. Kim J, Lee M, Shim HJ, et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun 2014;5:5747. DOI
PubMed
52. Boutry CM, Negre M, Jorda M, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for
robotics. Sci Robot 2018;3:eaau6914. DOI PubMed
53. Sim K, Rao Z, Zou Z, et al. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for
wearable human-machine interfaces. Sci Adv 2019;5:eaav9653. DOI PubMed PMC
54. Yu Y, Li J, Solomon SA, et al. All-printed soft human-machine interface for robotic physicochemical sensing. Sci Robot
2022;7:eabn0495. DOI PubMed PMC
55. Yancheng W, Yingtong L, Wen D, Deqing M. Recent progress on three-dimensional printing processes to fabricate flexible tactile
sensors. Chin J Mech Eng 2020;56:239. DOI
56. Wang C, Dong L, Peng D, Pan C. Tactile sensors for advanced intelligent systems. Adv Intell Syst 2019;1:1900090. DOI
57. Zhu J, Zhou C, Zhang M. Recent progress in flexible tactile sensor systems: from design to application. Soft Sci 2021;1:3. DOI
58. Wang Y, Zhu L, Mei D, Zhu W. A highly flexible tactile sensor with an interlocked truncated sawtooth structure based on stretchable
graphene/silver/silicone rubber composites. J Mater Chem C 2019;7:8669-79. DOI
59. Park J, Lee Y, Hong J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for
ultrasensitive and multimodal electronic skins. ACS Nano 2014;8:4689-97. DOI PubMed
60. Zhang J, Zhou LJ, Zhang HM, et al. Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of

