Page 23 - Read Online
P. 23

Jin et al. Soft Sci 2023;3:8  https://dx.doi.org/10.20517/ss.2022.34            Page 21 of 26

                    2021;6:eabc8801.  DOI  PubMed
               31.       Soni M, Dahiya R. Soft eSkin: distributed touch sensing with harmonized energy and computing. Philos Trans A Math Phys Eng Sci
                    2020;378:20190156.  DOI  PubMed  PMC
               32.       Lee Y, Park J, Cho S, et al. Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally
                    broad pressure range. ACS Nano 2018;12:4045-54.  DOI  PubMed
               33.       Jiang X, Chen R, Zhu H. Recent progress in wearable tactile sensors combined with algorithms based on machine learning and signal
                    processing. APL Mater 2021;9:030906.  DOI
               34.       Sundaram S, Kellnhofer P, Li Y, Zhu JY, Torralba A, Matusik W. Learning the signatures of the human grasp using a scalable tactile
                    glove. Nature 2019;569:698-702.  DOI  PubMed
               35.       Pressure profile systems®. The TactArray - pressure mapping sensor pads. Available from: https://pressureprofile.com/sensors/
                    tactarray [Last accessed on 8 Mar 2023].
               36.       Iwata H, Sugano S. Design of human symbiotic robot TWENDY-ONE. In Proceedings of the ICRA 2009: IEEE International
                    Conference on Robotics and Automation; 12-17 May 2009; Kobe, Japan; p. 3294.  DOI
               37.       Someya T, Sekitani T, Iba S, Kato Y, Kawaguchi H, Sakurai T. A large-area, flexible pressure sensor matrix with organic field-effect
                    transistors for artificial skin applications. Proc Natl Acad Sci USA 2004;101:9966-70.  DOI  PubMed  PMC
               38.       SynTouch Inc. SynTouch® BioTac® Tactile sensor. Available from: https://syntouchinc.com/sensor-documents/ [Last accessed on 8
                    Mar 2023].
               39.       Fishel JA, Loeb GE. Bayesian exploration for intelligent identification of textures. Front Neurorobot 2012;6:4.  DOI
               40.       Su Z, Kroemer O, Loeb GE, Sukhatme GS, Schaal S. Learning manipulation graphs from demonstrations using multimodal sensory
                    signals. In Proceedings of the ICRA 2018: IEEE International Conference on Robotics and Automation; 21-25 May 2018; Brisbane,
                    QLD, Australia; pp. 2758-65.  DOI
               41.       Yuan W, Dong S, Adelson EH. GelSight: High-resolution robot tactile sensors for estimating geometry and force. Sensors
                    2017;17:2762.  DOI  PubMed  PMC
               42.       Li R, Platt R, Yuan WZ, et al. Localization and manipulation of small parts using GelSight tactile sensing. In Proceedings of the
                    IROS 2014: IEEE/RSJ International Conference on Intelligent Robots and Systems; 14-18 September 2014; Chicago, IL, USA; pp.
                    3988-93.  DOI
               43.       Yuan W, Zhu C, Owens A, Srinivasan MA, Adelson EH. Shape-independent hardness estimation using deep learning and a GelSight
                    tactile sensor. In Proceedings of the ICRA 2017: IEEE International Conference on Robotics and Automation; 29 May-3 June 2017;
                    Singapore; pp. 951-8.  DOI
               44.       Mannsfeld SC, Tee BC, Stoltenberg RM, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric
                    layers. Nat Mater 2010;9:859-64.  DOI  PubMed
               45.       OnRobot.  OMD-20-SE-40N  DATASHEET.  Available  from:  https://www.g4.com.tw/userfiles/files/Datasheet/
                    onrobot_3d_force_sensor_omd_20_se_40n.pdf [Last accessed on 8 Mar 2023].
               46.       Yao KP, Kaboli M, Cheng G. Tactile-based object center of mass exploration and discrimination. In Proceedings of the humanoids
                    2017: IEEE-RAS 17th International Conference on Humanoid Robotics; 15-17 November 2017; Birmingham, UK; pp.876-81.  DOI
               47.       Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science 2011;333:838-43.  DOI
               48.       Tenzer Y, Jentoft LP, Howe RD. The feel of MEMS barometers: inexpensive and easily customized tactile array sensors. IEEE Robot
                    Automat Mag 2014;21:89-95.  DOI
               49.       Ades C, Gonzalez I, AlSaidi M, et al. Robotic finger force sensor fabrication and evaluation through a glove. Proc Fla Conf Recent
                    Adv Robot 2018;2018:60-65.  PubMed  PMC
               50.       Lin L, Xie Y, Wang S, et al. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile
                    imaging. ACS Nano 2013;7:8266-74.  DOI  PubMed
               51.       Kim J, Lee M, Shim HJ, et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun 2014;5:5747.  DOI
                    PubMed
               52.       Boutry CM, Negre M, Jorda M, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for
                    robotics. Sci Robot 2018;3:eaau6914.  DOI  PubMed
               53.       Sim K, Rao Z, Zou Z, et al. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for
                    wearable human-machine interfaces. Sci Adv 2019;5:eaav9653.  DOI  PubMed  PMC
               54.       Yu Y, Li J, Solomon SA, et al. All-printed soft human-machine interface for robotic physicochemical sensing. Sci Robot
                    2022;7:eabn0495.  DOI  PubMed  PMC
               55.       Yancheng W, Yingtong L, Wen D, Deqing M. Recent progress on three-dimensional printing processes to fabricate flexible tactile
                    sensors. Chin J Mech Eng 2020;56:239.  DOI
               56.       Wang C, Dong L, Peng D, Pan C. Tactile sensors for advanced intelligent systems. Adv Intell Syst 2019;1:1900090.  DOI
               57.       Zhu J, Zhou C, Zhang M. Recent progress in flexible tactile sensor systems: from design to application. Soft Sci 2021;1:3.  DOI
               58.       Wang Y, Zhu L, Mei D, Zhu W. A highly flexible tactile sensor with an interlocked truncated sawtooth structure based on stretchable
                    graphene/silver/silicone rubber composites. J Mater Chem C 2019;7:8669-79.  DOI
               59.       Park J, Lee Y, Hong J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for
                    ultrasensitive and multimodal electronic skins. ACS Nano 2014;8:4689-97.  DOI  PubMed
               60.       Zhang J, Zhou LJ, Zhang HM, et al. Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of
   18   19   20   21   22   23   24   25   26   27   28