Page 124 - Read Online
P. 124
Xi et al. Soft Sci 2023;3:26 https://dx.doi.org/10.20517/ss.2023.13 Page 33 of 34
191. Athira BS, George A, Vaishna Priya K, et al. High-performance flexible piezoelectric nanogenerator based on electrospun PVDF-
BaTiO nanofibers for self-powered vibration sensing applications. ACS Appl Mater Interfaces 2022;14:44239-50. DOI PubMed
3
192. Su C, Huang X, Zhang L, et al. Robust superhydrophobic wearable piezoelectric nanogenerators for self-powered body motion
sensors. Nano Energy 2023;107:108095. DOI
193. Lo WC, Chen CC, Fuh YK. 3D stacked near-field electrospun nanoporous PVDF-TrFE nanofibers as self-powered smart sensing in
gait big data analytics. Adv Mater Technol 2021;6:2000779. DOI
194. Zeng S, Zhang M, Jiang L, et al. Wearable piezoelectric nanogenerators based on core-shell Ga-PZT@GaO nanorod-enabled
x
P(VDF-TrFE) composites. ACS Appl Mater Interfaces 2022;14:7990-8000. DOI
195. Kumar M, Kumari P. P(VDF-TrFE)/ZnO nanocomposite synthesized by electrospinning: effect of ZnO nanofiller on physical,
mechanical, thermal, rheological and piezoelectric properties. Polym Bull 2023;80:4859-78. DOI
196. Deng L, Deng W, Yang T, et al. Flexible lead-free piezoelectric Ba 0.94 Sr 0.06 Sn 0.09 Ti 0.91 O /PDMS composite for self-powered human
3
motion monitoring. J Funct Biomater 2023;14:37. DOI PubMed PMC
197. Wang N, Daniels R, Connelly L, et al. All-organic flexible ferroelectret nanogenerator with fabric-based electrodes for self-powered
body area networks. Small 2021;17:e2103161. DOI PubMed
198. Zhang D, Mi Q, Wang D, Li T. MXene/Co O composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays
3 4
piezoelectric nanogenerator. Sens Actuators B Chem 2021;339:129923. DOI
199. Wu HS, Wei SM, Chen SW, et al. Metal-free perovskite piezoelectric nanogenerators for human-machine interfaces and self-powered
electrical stimulation applications. Adv Sci 2022;9:e2105974. DOI PubMed PMC
200. Tan P, Zou Y, Fan Y, Li Z. Self-powered wearable electronics. Wearable Technologies 2020;1:e5. DOI
201. Choi J, Kwon D, Kim B, et al. Wearable self-powered pressure sensor by integration of piezo-transmittance microporous elastomer
with organic solar cell. Nano Energy 2020;74:104749. DOI
202. Tan P, Han X, Zou Y, et al. Self-powered gesture recognition wristband enabled by machine learning for full keyboard and
multicommand input. Adv Mater 2022;34:e2200793. DOI PubMed
203. Zhang W, Wang P, Sun K, Wang C, Diao D. Intelligently detecting and identifying liquids leakage combining triboelectric
nanogenerator based self-powered sensor with machine learning. Nano Energy 2019;56:277-85. DOI
204. Zhang K, Li Z, Zhang J, et al. Biodegradable smart face masks for machine learning-assisted chronic respiratory disease diagnosis.
ACS Sens 2022;7:3135-43. DOI
205. Wang B, Dai L, Hunter LA, et al. A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications.
Carbohydr Polym 2021;268:118210. DOI PubMed
206. Shi Y, Wei X, Wang K, et al. Integrated all-fiber electronic skin toward self-powered sensing sports systems. ACS Appl Mater
Interfaces 2021;13:50329-37. DOI PubMed
207. Zhang M, Wang W, Xia G, Wang L, Wang K. Self-powered electronic skin for remote human-machine synchronization. ACS Appl
Electron Mater 2023;5:498-508. DOI
208. Lin Y, Duan S, Zhu D, Li Y, Wang B, Wu J. Self-powered and interface-independent tactile sensors based on bilayer single-electrode
triboelectric nanogenerators for robotic electronic skin. Adv Intell Syst 2023;5:2100120. DOI
209. Zhao Y, Gao W, Dai K, et al. Bioinspired multifunctional photonic-electronic smart skin for ultrasensitive health monitoring, for
visual and self-powered sensing. Adv Mater 2021;33:e2102332. DOI
210. Chun KY, Seo S, Han CS. Self-powered, stretchable, and wearable ion gel mechanoreceptor sensors. ACS Sens 2021;6:1940-8. DOI
211. Chen Y, Lei H, Gao Z, et al. Energy autonomous electronic skin with direct temperature-pressure perception. Nano Energy
2022;98:107273. DOI
212. Wu M, Yao K, Li D, et al. Self-powered skin electronics for energy harvesting and healthcare monitoring. Mater Today Energy
2021;21:100786. DOI
213. Guo Y, Chen Z, Yang W, et al. Multifunctional mechanical sensing electronic device based on triboelectric anisotropic crumpled
nanofibrous mats. ACS Appl Mater Interfaces 2021;13:55481-8. DOI PubMed
214. Liu Q, Jin L, Zhang P, et al. Nanofibrous grids assembled orthogonally from direct-written piezoelectric fibers as self-powered tactile
sensors. ACS Appl Mater Interfaces 2021;13:10623-31. DOI PubMed
215. Zhu J, Zeng Y, Luo Y, et al. Triboelectric patch based on maxwell displacement current for human energy harvesting and eye
movement monitoring. ACS Nano 2022;16:11884-91. DOI
216. Chen C, Zhang L, Ding W, et al. Woven fabric triboelectric nanogenerator for biomotion energy harvesting and as self-powered gait-
recognizing socks. Energies 2020;13:4119. DOI
217. Rana SMS, Rahman MT, Zahed MA, et al. Zirconium metal-organic framework and hybridized Co-NPC@MXene nanocomposite-
coated fabric for stretchable, humidity-resistant triboelectric nanogenerators and self-powered tactile sensors. Nano Energy
2022;104:107931. DOI
218. Zhou M, Xu F, Ma L, et al. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric
nanogenerators for self-powered sensing systems. Nano Energy 2022;104:107885. DOI
219. Du X, Tian M, Sun G, et al. Self-powered and self-sensing energy textile system for flexible wearable applications. ACS Appl Mater
Interfaces 2020;12:55876-83. DOI PubMed
220. Liu L, Yang X, Zhao L, et al. Nanowrinkle-patterned flexible woven triboelectric nanogenerator toward self-powered wearable
electronics. Nano Energy 2020;73:104797. DOI

