Page 119 - Read Online
P. 119
Page 28 of 34 Xi et al. Soft Sci 2023;3:26 https://dx.doi.org/10.20517/ss.2023.13
43. Du M, Cao Y, Qu X, et al. Hybrid nanogenerator for biomechanical energy harvesting, motion state detection, and pulse sensing. Adv
Mater Technol 2022;7:2101332. DOI
44. Meng X, Cheng Q, Jiang X, et al. Triboelectric nanogenerator as a highly sensitive self-powered sensor for driver behavior
monitoring. Nano Energy 2018;51:721-7. DOI
45. Hartel MC, Lee D, Weiss PS, Wang J, Kim J. Resettable sweat-powered wearable electrochromic biosensor. Biosens Bioelectron
2022;215:114565. DOI PubMed
46. Tan P, Xi Y, Chao S, et al. An artificial intelligence-enhanced blood pressure monitor wristband based on piezoelectric
nanogenerator. Biosensors 2022;12:234. DOI PubMed PMC
47. Hu B, Xue J, Jiang D, et al. Wearable exoskeleton system for energy harvesting and angle sensing based on a piezoelectric cantilever
generator array. ACS Appl Mater Interfaces 2022;14:36622-32. DOI PubMed
48. Shao Y, Shen M, Zhou Y, Cui X, Li L, Zhang Y. Nanogenerator-based self-powered sensors for data collection. Beilstein J
Nanotechnol 2021;12:680-93. DOI PubMed PMC
49. Wu Z, Cheng T, Wang ZL. Self-powered sensors and systems based on nanogenerators. Sensors 2020;20:2925. DOI PubMed PMC
50. Huang P, Wen DL, Qiu Y, et al. Textile-based triboelectric nanogenerators for wearable self-powered microsystems. Micromachines
2021;12:158. DOI PubMed PMC
51. Xu K, Lu Y, Takei K. Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv Mater Technol
2019;4:1800628. DOI
52. Qin XM, Zhang GQ. Application of the internet of things. In: 4th International Conference on Machine Vision (ICMV) - Computer
Vision and Image Analysis - Pattern Recognition and Basic Technologies. Singapore, SINGAPORE; 2011. DOI
53. Choi W, Kim J, Lee S, Park E. Smart home and internet of things: a bibliometric study. J Clean Prod 2021;301:126908. DOI
54. Yang Y, Guo X, Zhu M, et al. Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable internet of things
integrated green earth. Adv Energy Mater 2023;13:2203040. DOI
55. Wen N, Fan Z, Yang S, et al. Highly stretchable, breathable, and self-powered strain-temperature dual-functional sensors with
laminated structure for health monitoring, hyperthermia, and physiotherapy applications. Adv Elect Materials 2022;8:2200680. DOI
56. Lu Z, Zhu Y, Jia C, et al. A self-powered portable flexible sensor of monitoring speed skating techniques. Biosensors 2021;11:108.
DOI PubMed PMC
57. Shi Q, Dong B, He T, et al. Progress in wearable electronics/photonic - moving toward the era of artificial intelligence and internet of
things. InfoMat 2020;2:1131-62. DOI
58. Hayashi H, Tsuji T. Human-machine interfaces based on bioelectric signals: a narrative review with a novel system proposal. IEEJ
Transactions Elec Engng 2022;17:1536-44. DOI
59. Izadgoshasb I. Piezoelectric energy harvesting towards self-powered internet of things (IoT) sensors in smart cities. Sensors
2021;21:8332. DOI PubMed PMC
60. Su Y, Chen G, Chen C, et al. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv Mater
2021;33:e2170277. DOI
61. Gao M, Wang P, Jiang L, et al. Power generation for wearable systems. Energy Environ Sci 2021;14:2114-57. DOI
62. Rahimi Sardo F, Rayegani A, Matin Nazar A, et al. Recent progress of triboelectric nanogenerators for biomedical sensors: from
design to application. Biosensors 2022;12:697. DOI PubMed PMC
63. Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths
and weaknesses. FASEB J 2008;22:338-42. DOI PubMed
64. Mongeon P, Paul-hus A. The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics 2016;106:213-
28. DOI
65. Zhu J, Liu W. A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics 2020;123:321-35.
DOI
66. Singh VK, Singh P, Karmakar M, Leta J, Mayr P. The journal coverage of Web of Science, Scopus and Dimensions: a comparative
analysis. Scientometrics 2021;126:5113-42. DOI
67. Martín-Martín A, Thelwall M, Orduna-Malea E, Delgado López-Cózar E. Google Scholar, Microsoft Academic, Scopus,
Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations. Scientometrics
2021;126:871-906. DOI PubMed PMC
68. Wang Q, Waltman L. Large-scale analysis of the accuracy of the journal classification systems of Web of Science and Scopus. J
Informetr 2016;10:347-64. DOI
69. AlRyalat SAS, Malkawi LW, Momani SM. Comparing bibliometric analysis using PubMed, Scopus, and Web of Science databases.
J Vis Exp 2019. DOI PubMed
70. Franceschini F, Maisano D, Mastrogiacomo L. Empirical analysis and classification of database errors in Scopus and Web of Science.
J Informetr 2016;10:933-53. DOI
71. Xie L, Chen Z, Wang H, Zheng C, Jiang J. Bibliometric and visualized analysis of scientific publications on atlantoaxial spine
surgery based on Web of Science and VOSviewer. World Neurosurg 2020;137:435-442.e4. DOI
72. Antwi-afari MF, Li H, Wong JK, et al. Sensing and warning-based technology applications to improve occupational health and safety
in the construction industry: a literature review. Eng Constr Archit Manag 2019;26:1534-52. DOI
73. Asadzadeh A, Arashpour M, Li H, Ngo T, Bab-hadiashar A, Rashidi A. Sensor-based safety management. Automat Constr

