Page 119 - Read Online
P. 119

Page 28 of 34                             Xi et al. Soft Sci 2023;3:26  https://dx.doi.org/10.20517/ss.2023.13

               43.       Du M, Cao Y, Qu X, et al. Hybrid nanogenerator for biomechanical energy harvesting, motion state detection, and pulse sensing. Adv
                    Mater Technol 2022;7:2101332.  DOI
               44.       Meng X, Cheng Q, Jiang X, et al. Triboelectric nanogenerator as a highly sensitive self-powered sensor for driver behavior
                    monitoring. Nano Energy 2018;51:721-7.  DOI
               45.       Hartel MC, Lee D, Weiss PS, Wang J, Kim J. Resettable sweat-powered wearable electrochromic biosensor. Biosens Bioelectron
                    2022;215:114565.  DOI  PubMed
               46.       Tan P, Xi Y, Chao S, et al. An artificial intelligence-enhanced blood pressure monitor wristband based on piezoelectric
                    nanogenerator. Biosensors 2022;12:234.  DOI  PubMed  PMC
               47.       Hu B, Xue J, Jiang D, et al. Wearable exoskeleton system for energy harvesting and angle sensing based on a piezoelectric cantilever
                    generator array. ACS Appl Mater Interfaces 2022;14:36622-32.  DOI  PubMed
               48.       Shao Y, Shen M, Zhou Y, Cui X, Li L, Zhang Y. Nanogenerator-based self-powered sensors for data collection. Beilstein J
                    Nanotechnol 2021;12:680-93.  DOI  PubMed  PMC
               49.       Wu Z, Cheng T, Wang ZL. Self-powered sensors and systems based on nanogenerators. Sensors 2020;20:2925.  DOI  PubMed  PMC
               50.       Huang P, Wen DL, Qiu Y, et al. Textile-based triboelectric nanogenerators for wearable self-powered microsystems. Micromachines
                    2021;12:158.  DOI  PubMed  PMC
               51.       Xu K, Lu Y, Takei K. Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv Mater Technol
                    2019;4:1800628.  DOI
               52.       Qin XM, Zhang GQ. Application of the internet of things. In: 4th International Conference on Machine Vision (ICMV) - Computer
                    Vision and Image Analysis - Pattern Recognition and Basic Technologies. Singapore, SINGAPORE; 2011.  DOI
               53.       Choi W, Kim J, Lee S, Park E. Smart home and internet of things: a bibliometric study. J Clean Prod 2021;301:126908.  DOI
               54.       Yang Y, Guo X, Zhu M, et al. Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable internet of things
                    integrated green earth. Adv Energy Mater 2023;13:2203040.  DOI
               55.       Wen N, Fan Z, Yang S, et al. Highly stretchable, breathable, and self-powered strain-temperature dual-functional sensors with
                    laminated structure for health monitoring, hyperthermia, and physiotherapy applications. Adv Elect Materials 2022;8:2200680.  DOI
               56.       Lu Z, Zhu Y, Jia C, et al. A self-powered portable flexible sensor of monitoring speed skating techniques. Biosensors 2021;11:108.
                    DOI  PubMed  PMC
               57.       Shi Q, Dong B, He T, et al. Progress in wearable electronics/photonic - moving toward the era of artificial intelligence and internet of
                    things. InfoMat 2020;2:1131-62.  DOI
               58.       Hayashi H, Tsuji T. Human-machine interfaces based on bioelectric signals: a narrative review with a novel system proposal. IEEJ
                    Transactions Elec Engng 2022;17:1536-44.  DOI
               59.       Izadgoshasb I. Piezoelectric energy harvesting towards self-powered internet of things (IoT) sensors in smart cities. Sensors
                    2021;21:8332.  DOI  PubMed  PMC
               60.       Su Y, Chen G, Chen C, et al. Self-powered respiration monitoring enabled by a triboelectric nanogenerator.  Adv Mater
                    2021;33:e2170277.  DOI
               61.       Gao M, Wang P, Jiang L, et al. Power generation for wearable systems. Energy Environ Sci 2021;14:2114-57.  DOI
               62.       Rahimi Sardo F, Rayegani A, Matin Nazar A, et al. Recent progress of triboelectric nanogenerators for biomedical sensors: from
                    design to application. Biosensors 2022;12:697.  DOI  PubMed  PMC
               63.       Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths
                    and weaknesses. FASEB J 2008;22:338-42.  DOI  PubMed
               64.       Mongeon P, Paul-hus A. The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics 2016;106:213-
                    28.  DOI
               65.       Zhu J, Liu W. A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics 2020;123:321-35.
                    DOI
               66.       Singh VK, Singh P, Karmakar M, Leta J, Mayr P. The journal coverage of Web of Science, Scopus and Dimensions: a comparative
                    analysis. Scientometrics 2021;126:5113-42.  DOI
               67.       Martín-Martín A, Thelwall M, Orduna-Malea E, Delgado López-Cózar E. Google Scholar, Microsoft Academic, Scopus,
                    Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations. Scientometrics
                    2021;126:871-906.  DOI  PubMed  PMC
               68.       Wang Q, Waltman L. Large-scale analysis of the accuracy of the journal classification systems of Web of Science and Scopus. J
                    Informetr 2016;10:347-64.  DOI
               69.       AlRyalat SAS, Malkawi LW, Momani SM. Comparing bibliometric analysis using PubMed, Scopus, and Web of Science databases.
                    J Vis Exp 2019.  DOI  PubMed
               70.       Franceschini F, Maisano D, Mastrogiacomo L. Empirical analysis and classification of database errors in Scopus and Web of Science.
                    J Informetr 2016;10:933-53.  DOI
               71.       Xie L, Chen Z, Wang H, Zheng C, Jiang J. Bibliometric and visualized analysis of scientific publications on atlantoaxial spine
                    surgery based on Web of Science and VOSviewer. World Neurosurg 2020;137:435-442.e4.  DOI
               72.       Antwi-afari MF, Li H, Wong JK, et al. Sensing and warning-based technology applications to improve occupational health and safety
                    in the construction industry: a literature review. Eng Constr Archit Manag 2019;26:1534-52.  DOI
               73.       Asadzadeh A, Arashpour M, Li H, Ngo T, Bab-hadiashar A, Rashidi A. Sensor-based safety management. Automat Constr
   114   115   116   117   118   119   120   121   122   123   124