Page 120 - Read Online
P. 120

Xi et al. Soft Sci 2023;3:26  https://dx.doi.org/10.20517/ss.2023.13            Page 29 of 34

                    2020;113:103128.  DOI
               74.       Zhang W, Zhang Y, Yang G, et al. Wearable and self-powered sensors made by triboelectric nanogenerators assembled from
                    antibacterial bromobutyl rubber. Nano Energy 2021;82:105769.  DOI
               75.       Kamilya T, Park J. Highly sensitive self-powered biomedical applications using triboelectric nanogenerator. Micromachines
                    2022;13:2065.  DOI  PubMed  PMC
               76.       Yi Q, Pei X, Das P, Qin H, Lee SW, Esfandyarpour R. A self-powered triboelectric MXene-based 3D-printed wearable physiological
                    biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 2022;101:107511.  DOI
               77.       Liang H, He Y, Chen M, et al. Self-powered stretchable mechanoluminescent optical fiber strain sensor. Adv Intell Syst
                    2021;3:2100035.  DOI
               78.       Parrilla M, De Wael K. Wearable self-powered electrochemical devices for continuous health management. Adv Funct Mater
                    2021;31:2107042.  DOI
               79.       Shi Y, Zhang K, Ding S, et al. A self-powered piezoelectret sensor based on foamed plastic garbage for monitoring human motions.
                    Nano Res 2023;16:1269-76.  DOI
               80.       Kong H, Si P, Li M, et al. Enhanced electricity generation from graphene microfluidic channels for self-powered flexible sensors.
                    Nano Lett 2022;22:3266-74.  DOI  PubMed
               81.       Bae CW, Chinnamani MV, Lee EH, Lee N. Stretchable non-enzymatic fuel cell-based sensor patch integrated with thread-embedded
                    microfluidics for self-powered wearable glucose monitoring. Adv Materials Inter 2022;9:2200492.  DOI
               82.       Huang J, Hao Y, Zhao M, Li W, Huang F, Wei Q. All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for
                    self-powered wearable sensors. ACS Appl Mater Interfaces 2021;13:24774-84.  DOI  PubMed
               83.       Zhang W, Liu Q, Chao S, et al. Ultrathin stretchable triboelectric nanogenerators improved by postcharging electrode material. ACS
                    Appl Mater Interfaces 2021;13:42966-76.  DOI  PubMed
               84.       Lin Y, Long Z, Liang S, Zhong T, Xing L. A wearable exhaling-oxygen-sensing mask based on piezoelectric/gas-sensing coupling
                    effect for real-time monitoring and uploading lung disease information. J Phys D: Appl Phys 2022;55:224001.  DOI
               85.       Tan P, Zhao C, Fan Y, Li Z. Research progress of self-powered flexible biomedical sensors. Acta Phys Sin 2020;69:178704.  DOI
               86.       Lv F, Ma H, Shen L, et al. Wearable helical molybdenum nitride supercapacitors for self-powered healthcare smartsensors. ACS Appl
                    Mater Interfaces 2021;13:29780-7.  DOI
               87.       Zheng C, Xiang L, Jin W, et al. A flexible self-powered sensing element with integrated organic thermoelectric generator. Adv Mater
                    Technol 2019;4:1900247.  DOI
               88.       Wang Y, Zhu W, Deng Y, et al. Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by
                    flexible thin-film thermoelectric generator. Nano Energy 2020;73:104773.  DOI
               89.       Mo X, Zhou H, Li W, et al. Piezoelectrets for wearable energy harvesters and sensors. Nano Energy 2019;65:104033.  DOI
               90.       Yuan J, Zhu R, Li G. Self-powered electronic skin with multisensory functions based on thermoelectric conversion. Adv Mater
                    Technol 2020;5:2000419.  DOI
               91.       Xiao Y, Shen D, Zou G, et al. Self-powered, flexible and remote-controlled breath monitor based on TiO  nanowire networks.
                                                                                            2
                    Nanotechnology 2019;30:325503.  DOI
               92.       Hou X, Zhang S, Yu J, et al. Flexible piezoelectric nanofibers/polydimethylsiloxane-based pressure sensor for self-powered human
                    motion monitoring. Energy Technol 2020;8:1901242.  DOI
               93.       Sun T, Shen L, Jiang Y, et al. Wearable textile supercapacitors for self-powered enzyme-free smartsensors. ACS Appl Mater
                    Interfaces 2020;12:21779-87.  DOI  PubMed
               94.       Ma H, Liu Q, Cheng P, et al. Wearable motion smartsensors self-powered by core-shell Au@Pt methanol fuel cells. ACS Sens
                    2021;6:4526-34.  DOI  PubMed
               95.       Wang D, Zhang D, Tang M, et al. Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-
                    based flexible wearable electronics. Chem Eng J 2022;446:136914.  DOI
               96.       Wang D, Zhang D, Yang Y, Mi Q, Zhang J, Yu L. Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for
                    self-powered organ-like MXene/metal-organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano 2021;15:2911-9.
                    DOI  PubMed
               97.       Zheng S, Wang H, Das P, et al. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage
                    devices for all-flexible self-powered integrated systems. Adv Mater 2021;33:e2005449.  DOI  PubMed
               98.       Bhanu N, Harikumar ME, Batabyal SK. Self-powered low-range pressure sensor using biopolymer composites. Appl Phys A
                    2022:128.  DOI
               99.       Gong H, Xu Z, Yang Y, et al. Transparent, stretchable and degradable protein electronic skin for biomechanical energy scavenging
                    and wireless sensing. Biosens Bioelectron 2020;169:112567.  DOI  PubMed
               100.      Bi S, Han X, Chen Q, et al. Ultralarge curvature and extreme rapid degradable porous wood based flexible triboelectric sensor for
                    physical motion monitoring. Adv Mater Technol 2023;8:2201066.  DOI
               101.      Lan X, Li W, Ye C, et al. Scalable and degradable dextrin-based elastomers for wearable touch sensing. ACS Appl Mater Interfaces
                    2023;15:4398-407.  DOI  PubMed  PMC
               102.      Morsada Z, Hossain MM, Islam MT, Mobin MA, Saha S. Recent progress in biodegradable and bioresorbable materials: from passive
                    implants to active electronics. Appl Mater Today 2021;25:101257.  DOI
               103.      Chen K, Li Y, Du Z, et al. CoFe O  embedded bacterial cellulose for flexible, biodegradable, and self-powered electromagnetic
                                          2  4
   115   116   117   118   119   120   121   122   123   124   125