Page 93 - Read Online
P. 93
Page 28 of 32 Zhao et al. Soft Sci 2024;4:18 https://dx.doi.org/10.20517/ss.2024.04
2022;10:273. DOI
42. Mohan A, Rajendran V, Mishra RK, Jayaraman M. Recent advances and perspectives in sweat based wearable electrochemical
sensors. TrAC Trends Anal Chem 2020;131:116024. DOI
43. Liu C, Xu T, Wang D, Zhang X. The role of sampling in wearable sweat sensors. Talanta 2020;212:120801. DOI PubMed
44. Shirreffs SM, Maughan RJ. Whole body sweat collection in humans: an improved method with preliminary data on electrolyte
content. J Appl Physiol 1997;82:336-41. DOI
45. Ono E, Murota H, Mori Y, et al. Sweat glucose and GLUT2 expression in atopic dermatitis: implication for clinical manifestation and
treatment. PLoS One 2018;13:e0195960. DOI PubMed PMC
+
46. Baker LB, Ungaro CT, Barnes KA, Nuccio RP, Reimel AJ, Stofan JR. Validity and reliability of a field technique for sweat Na and
+
K analysis during exercise in a hot-humid environment. Physiol Rep 2014;2:e12007. DOI PubMed PMC
47. Baker LB, Model JB, Barnes KA, et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride
analytics for sports science applications. Sci Adv 2020;6:eabe3929. DOI PubMed PMC
48. Brueck A, Iftekhar T, Stannard AB, Yelamarthi K, Kaya T. A real-time wireless sweat rate measurement system for physical activity
monitoring. Sensors 2018;18:533. DOI PubMed PMC
49. Huang X, Liu Y, Chen K, et al. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small
2014;10:3083-90. DOI
50. Dai B, Li K, Shi L, et al. Bioinspired Janus textile with conical micropores for human body moisture and thermal management. Adv
Mater 2019;31:1904113. DOI
51. Zhong B, Jiang K, Wang L, Shen G. Wearable sweat loss measuring devices: from the role of sweat loss to advanced mechanisms
and designs. Adv Sci 2022;9:e2103257. DOI PubMed PMC
52. Jain V, Ochoa M, Jiang H, Rahimi R, Ziaie B. A mass-customizable dermal patch with discrete colorimetric indicators for
personalized sweat rate quantification. Microsyst Nanoeng 2019;5:29. DOI PubMed PMC
53. Kabiri K, Zohuriaan-Mehr MJ. Porous superabsorbent hydrogel composites: synthesis, morphology and swelling rate. Macro Mater
Eng 2004;289:653-61. DOI
54. Sempionatto JR, Moon JM, Wang J. Touch-based fingertip blood-free reliable glucose monitoring: personalized data processing for
predicting blood glucose concentrations. ACS Sens 2021;6:1875-83. DOI PubMed
55. Wang S, Wu Y, Gu Y, et al. Wearable sweatband sensor platform based on gold nanodendrite array as efficient solid contact of ion-
selective electrode. Anal Chem 2017;89:10224-31. DOI
56. Wu CH, Ma HJH, Baessler P, Balanay RK, Ray TR. Skin-interfaced microfluidic systems with spatially engineered 3D fluidics for
sweat capture and analysis. Sci Adv 2023;9:eadg4272. DOI PubMed PMC
57. Zhang Y, Chen Y, Huang J, et al. Skin-interfaced microfluidic devices with one-opening chambers and hydrophobic valves for sweat
collection and analysis. Lab Chip 2020;20:2635-45. DOI
58. Son J, Bae GY, Lee S, et al. Cactus-spine-inspired sweat-collecting patch for fast and continuous monitoring of sweat. Adv Mater
2021;33:2102740. DOI
59. Song Y, Min J, Yu Y, et al. Wireless battery-free wearable sweat sensor powered by human motion. Sci Adv 2020;6:eaay9842. DOI
PubMed PMC
60. Bandodkar AJ, Gutruf P, Choi J, et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical,
colorimetric, and volumetric analysis of sweat. Sci Adv 2019;5:eaav3294. DOI PubMed PMC
61. Emaminejad S, Gao W, Wu E, et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring
using a fully integrated wearable platform. Proc Natl Acad Sci U S A 2017;114:4625-30. DOI PubMed PMC
62. Kim J, Jeerapan I, Imani S, et al. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system.
ACS Sens 2016;1:1011-9. DOI
63. Xu G, Huang X, Shi R, et al. Triboelectric nanogenerator enabled sweat extraction and power activation for sweat monitoring. Adv
Funct Mater 2024;34:2310777. DOI
64. Hammond KB, Turcios NL, Gibson LE. Clinical evaluation of the macroduct sweat collection system and conductivity analyzer in
the diagnosis of cystic fibrosis. J Pediatr 1994;124:255-60. DOI PubMed
65. Yeung KK, Huang T, Hua Y, Zhang K, Yuen MMF, Gao Z. Recent advances in electrochemical sensors for wearable sweat
monitoring: a review. IEEE Sensors J 2021;21:14522-39. DOI
66. Yin J, Li J, Reddy VS, Ji D, Ramakrishna S, Xu L. Flexible textile-based sweat sensors for wearable applications. Biosensors
2023;13:127. DOI PubMed PMC
67. Naik AR, Zhou Y, Dey AA, et al. Printed microfluidic sweat sensing platform for cortisol and glucose detection. Lab Chip
2022;22:156-69. DOI
68. Patterson MJ, Galloway SD, Nimmo MA. Variations in regional sweat composition in normal human males. Exp Physiol
2000;85:869-75. DOI PubMed
69. Huang X, Liu Y, Zhou J, et al. Garment embedded sweat-activated batteries in wearable electronics for continuous sweat monitoring.
npj Flex Electron 2022;6:10. DOI
70. Baker LB, Barnes KA, Anderson ML, Passe DH, Stofan JR. Normative data for regional sweat sodium concentration and whole-body
sweating rate in athletes. J Sports Sci 2016;34:358-68. DOI PubMed
71. Krabak BJ, Lipman GS, Waite BL, Rundell SD. Exercise-associated hyponatremia, hypernatremia, and hydration status in multistage

