Page 95 - Read Online
P. 95
Page 30 of 32 Zhao et al. Soft Sci 2024;4:18 https://dx.doi.org/10.20517/ss.2024.04
ACS Sens 2021;6:2787-801. DOI PubMed PMC
101. Kwon K, Kim JU, Deng Y, et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat
in real time. Nat Electron 2021;4:302-12. DOI
102. Ghaffari R, Choi J, Raj MS, et al. Soft wearable systems for colorimetric and electrochemical analysis of biofluids. Adv Funct Mater
2020;30:1907269. DOI
103. Heng W, Yang G, Kim WS, Xu K. Emerging wearable flexible sensors for sweat analysis. Bio-des Manuf 2022;5:64-84. DOI
104. Toi PT, Trung TQ, Dang TML, Bae CW, Lee NE. Highly electrocatalytic, durable, and stretchable nanohybrid fiber for on-body
sweat glucose detection. ACS Appl Mater Interfaces 2019;11:10707-17. DOI PubMed
105. Saha T, Songkakul T, Knisely CT, et al. Wireless wearable electrochemical sensing platform with zero-power osmotic sweat
extraction for continuous lactate monitoring. ACS Sens 2022;7:2037-48. DOI
106. Huang X, Li J, Liu Y, et al. Epidermal self-powered sweat sensors for glucose and lactate monitoring. Bio-des Manuf 2022;5:201-9.
DOI
107. Parrilla M, Ortiz-Gómez I, Cánovas R, Salinas-Castillo A, Cuartero M, Crespo GA. Wearable potentiometric ion patch for on-body
electrolyte monitoring in sweat: toward a validation strategy to ensure physiological relevance. Anal Chem 2019;91:8644-51. DOI
108. Zhang X, Tang Y, Wu H, Wang Y, Niu L, Li F. Integrated aptasensor array for sweat drug analysis. Anal Chem 2022;94:7936-43.
DOI
109. Veeralingam S, Badhulika S. Two-dimensional metallic NiSe nanoclusters-based low-cost, flexible, amperometric sensor for
2
detection of neurological drug carbamazepine in human sweat samples. Front Chem 2020;8:337. DOI PubMed PMC
110. Wang S, Liu M, Yang X, et al. An unconventional vertical fluidic-controlled wearable platform for synchronously detecting sweat
rate and electrolyte concentration. Biosens Bioelectron 2022;210:114351. DOI
111. Dautta M, Ayala-Cardona LF, Davis N, et al. Tape-free, digital wearable band for exercise sweat rate monitoring. Adv Mater Technol
2023;8:2201187. DOI
112. Zhang B, Li J, Zhou J, et al. A three-dimensional liquid diode for soft, integrated permeable electronics. Nature 2024;628:84-92.
DOI
113. Bandodkar AJ, Lee SP, Huang I, et al. Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems. Nat
Electron 2020;3:554-62. DOI
114. Brasier N, Sempionatto JR, Bourke S, et al. Towards on-skin analysis of sweat for managing disorders of substance abuse. Nat
Biomed Eng 2024. DOI PubMed
115. Sun X, Zhao C, Li H, et al. Wearable near-field communication sensors for healthcare: materials, fabrication and application.
Micromachines 2022;13:784. DOI PubMed PMC
116. Cheng C, Li X, Xu G, et al. Battery-free, wireless, and flexible electrochemical patch for in situ analysis of sweat cortisol via near
field communication. Biosens Bioelectron 2021;172:112782. DOI
117. Lin R, Kim HJ, Achavananthadith S, et al. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat
Commun 2020;11:444. DOI PubMed PMC
118. Heikenfeld J. Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016. Electroanalysis
2016;28:1242-9. DOI
119. Tasangtong B, Sirichan K, Hasoon C, Na Nongkhai P, Rodthongkum N, Sameenoi Y. Fabrication of biocompatible and
biodegradable cloth-based sweat sensors using polylactic acid (PLA) via stencil transparent film-printing. Sensors Actuat B Chem
2024;408:135513. DOI
120. Feng X, Ning Y, Wu Z, et al. Defect-enriched graphene nanoribbons tune the adsorption behavior of the mediator to boost the lactate/
oxygen biofuel cell. Nanomaterials 2023;13:1089. DOI PubMed PMC
121. Shitanda I, Takamatsu K, Niiyama A, et al. High-power lactate/O enzymatic biofuel cell based on carbon cloth electrodes modified
2
with MgO-templated carbon. J Power Sources 2019;436:226844. DOI
122. Jia W, Valdés-Ramírez G, Bandodkar AJ, Windmiller JR, Wang J. Epidermal biofuel cells: energy harvesting from human
perspiration. Angew Chem Int Ed Engl 2013;52:7233-6. DOI PubMed
123. Hartel MC, Lee D, Weiss PS, Wang J, Kim J. Resettable sweat-powered wearable electrochromic biosensor. Biosens Bioelectron
2022;215:114565. DOI PubMed
124. Yu Y, Nassar J, Xu C, et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine
interfaces. Sci Robot 2020;5:eaaz7946. DOI PubMed PMC
125. Shitanda I, Morigayama Y, Iwashita R, et al. Paper-based lactate biofuel cell array with high power output. J Power Sources
2021;489:229533. DOI
126. Shitanda I, Hirano K, Loew N, Watanabe H, Itagaki M, Mikawa T. High-performance, two-step/Bi-enzyme lactate biofuel cell with
lactate oxidase and pyruvate oxidase. J Power Sources 2021;498:229935. DOI
127. Chen X, Yin L, Lv J, et al. Stretchable and flexible buckypaper-based lactate biofuel cell for wearable electronics. Adv Funct Mater
2019;29:1905785. DOI
128. Yin L, Moon J, Sempionatto JR, et al. A passive perspiration biofuel cell: high energy return on investment. Joule 2021;5:1888-904.
DOI
129. Bandodkar AJ, You J, Kim N, et al. Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy
from human sweat. Energy Environ Sci 2017;10:1581-9. DOI

