Page 95 - Read Online
P. 95

Page 30 of 32                           Zhao et al. Soft Sci 2024;4:18  https://dx.doi.org/10.20517/ss.2024.04

                    ACS Sens 2021;6:2787-801.  DOI  PubMed  PMC
               101.      Kwon K, Kim JU, Deng Y, et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat
                    in real time. Nat Electron 2021;4:302-12.  DOI
               102.      Ghaffari R, Choi J, Raj MS, et al. Soft wearable systems for colorimetric and electrochemical analysis of biofluids. Adv Funct Mater
                    2020;30:1907269.  DOI
               103.      Heng W, Yang G, Kim WS, Xu K. Emerging wearable flexible sensors for sweat analysis. Bio-des Manuf 2022;5:64-84.  DOI
               104.      Toi PT, Trung TQ, Dang TML, Bae CW, Lee NE. Highly electrocatalytic, durable, and stretchable nanohybrid fiber for on-body
                    sweat glucose detection. ACS Appl Mater Interfaces 2019;11:10707-17.  DOI  PubMed
               105.      Saha T, Songkakul T, Knisely CT, et al. Wireless wearable electrochemical sensing platform with zero-power osmotic sweat
                    extraction for continuous lactate monitoring. ACS Sens 2022;7:2037-48.  DOI
               106.      Huang X, Li J, Liu Y, et al. Epidermal self-powered sweat sensors for glucose and lactate monitoring. Bio-des Manuf 2022;5:201-9.
                    DOI
               107.      Parrilla M, Ortiz-Gómez I, Cánovas R, Salinas-Castillo A, Cuartero M, Crespo GA. Wearable potentiometric ion patch for on-body
                    electrolyte monitoring in sweat: toward a validation strategy to ensure physiological relevance. Anal Chem 2019;91:8644-51.  DOI
               108.      Zhang X, Tang Y, Wu H, Wang Y, Niu L, Li F. Integrated aptasensor array for sweat drug analysis. Anal Chem 2022;94:7936-43.
                    DOI
               109.      Veeralingam S, Badhulika S. Two-dimensional metallic NiSe  nanoclusters-based low-cost, flexible, amperometric sensor for
                                                              2
                    detection of neurological drug carbamazepine in human sweat samples. Front Chem 2020;8:337.  DOI  PubMed  PMC
               110.      Wang S, Liu M, Yang X, et al. An unconventional vertical fluidic-controlled wearable platform for synchronously detecting sweat
                    rate and electrolyte concentration. Biosens Bioelectron 2022;210:114351.  DOI
               111.      Dautta M, Ayala-Cardona LF, Davis N, et al. Tape-free, digital wearable band for exercise sweat rate monitoring. Adv Mater Technol
                    2023;8:2201187.  DOI
               112.      Zhang B, Li J, Zhou J, et al. A three-dimensional liquid diode for soft, integrated permeable electronics. Nature 2024;628:84-92.
                    DOI
               113.      Bandodkar AJ, Lee SP, Huang I, et al. Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems. Nat
                    Electron 2020;3:554-62.  DOI
               114.      Brasier N, Sempionatto JR, Bourke S, et al. Towards on-skin analysis of sweat for managing disorders of substance abuse. Nat
                    Biomed Eng 2024.  DOI  PubMed
               115.      Sun X, Zhao C, Li H, et al. Wearable near-field communication sensors for healthcare: materials, fabrication and application.
                    Micromachines 2022;13:784.  DOI  PubMed  PMC
               116.      Cheng C, Li X, Xu G, et al. Battery-free, wireless, and flexible electrochemical patch for in situ analysis of sweat cortisol via near
                    field communication. Biosens Bioelectron 2021;172:112782.  DOI
               117.      Lin R, Kim HJ, Achavananthadith S, et al. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat
                    Commun 2020;11:444.  DOI  PubMed  PMC
               118.      Heikenfeld J. Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016. Electroanalysis
                    2016;28:1242-9.  DOI
               119.      Tasangtong B, Sirichan K, Hasoon C, Na Nongkhai P, Rodthongkum N, Sameenoi Y. Fabrication of biocompatible and
                    biodegradable cloth-based sweat sensors using polylactic acid (PLA) via stencil transparent film-printing. Sensors Actuat B Chem
                    2024;408:135513.  DOI
               120.      Feng X, Ning Y, Wu Z, et al. Defect-enriched graphene nanoribbons tune the adsorption behavior of the mediator to boost the lactate/
                    oxygen biofuel cell. Nanomaterials 2023;13:1089.  DOI  PubMed  PMC
               121.      Shitanda I, Takamatsu K, Niiyama A, et al. High-power lactate/O  enzymatic biofuel cell based on carbon cloth electrodes modified
                                                               2
                    with MgO-templated carbon. J Power Sources 2019;436:226844.  DOI
               122.      Jia W, Valdés-Ramírez G, Bandodkar AJ, Windmiller JR, Wang J. Epidermal biofuel cells: energy harvesting from human
                    perspiration. Angew Chem Int Ed Engl 2013;52:7233-6.  DOI  PubMed
               123.      Hartel MC, Lee D, Weiss PS, Wang J, Kim J. Resettable sweat-powered wearable electrochromic biosensor. Biosens Bioelectron
                    2022;215:114565.  DOI  PubMed
               124.      Yu Y, Nassar J, Xu C, et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine
                    interfaces. Sci Robot 2020;5:eaaz7946.  DOI  PubMed  PMC
               125.      Shitanda I, Morigayama Y, Iwashita R, et al. Paper-based lactate biofuel cell array with high power output. J Power Sources
                    2021;489:229533.  DOI
               126.      Shitanda I, Hirano K, Loew N, Watanabe H, Itagaki M, Mikawa T. High-performance, two-step/Bi-enzyme lactate biofuel cell with
                    lactate oxidase and pyruvate oxidase. J Power Sources 2021;498:229935.  DOI
               127.      Chen X, Yin L, Lv J, et al. Stretchable and flexible buckypaper-based lactate biofuel cell for wearable electronics. Adv Funct Mater
                    2019;29:1905785.  DOI
               128.      Yin L, Moon J, Sempionatto JR, et al. A passive perspiration biofuel cell: high energy return on investment. Joule 2021;5:1888-904.
                    DOI
               129.      Bandodkar AJ, You J, Kim N, et al. Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy
                    from human sweat. Energy Environ Sci 2017;10:1581-9.  DOI
   90   91   92   93   94   95   96   97   98   99   100