Page 94 - Read Online
P. 94
Zhao et al. Soft Sci 2024;4:18 https://dx.doi.org/10.20517/ss.2024.04 Page 29 of 32
ultramarathons. Wilderness Environ Med 2017;28:291-8. DOI PubMed
72. Kim T, Yi Q, Hoang E, Esfandyarpour R. A 3D printed wearable bioelectronic patch for multi-sensing and in situ sweat electrolyte
monitoring. Adv Mater Technol 2021;6:2001021. DOI
73. Takahashi A, Maeda K, Sasaki K, et al. Relationships of hyperchloremia with hypertension and proteinuria in patients with chronic
kidney disease. Clin Exp Nephrol 2022;26:880-5. DOI
74. Montes-García V, de Oliveira RF, Wang Y, et al. Harnessing selectivity and sensitivity in ion sensing via supramolecular recognition:
a 3D hybrid gold nanoparticle network chemiresistor. Adv Funct Mater 2021;31:2008554. DOI
75. Guinovart T, Bandodkar AJ, Windmiller JR, Andrade FJ, Wang J. A potentiometric tattoo sensor for monitoring ammonium in sweat.
Analyst 2013;138:7031-8. DOI
76. Hu Y, Wang L, Li J, et al. Thin, soft, skin-integrated electronics for real-time and wireless detection of uric acid in sweat. Int J Smart
Nano Mater 2023;14:406-19. DOI
77. Gao W, Nyein HYY, Shahpar Z, et al. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens
2016;1:866-74. DOI
78. Kim J, de Araujo WR, Samek IA, et al. Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat.
Electrochem Commun 2015;51:41-5. DOI
79. Gao W, Emaminejad S, Nyein HYY, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.
Nature 2016;529:509-14. DOI PubMed PMC
80. Abrar MA, Dong Y, Lee PK, Kim WS. Bendable electro-chemical lactate sensor printed with silver nano-particles. Sci Rep
2016;6:30565. DOI PubMed PMC
81. Imani S, Bandodkar AJ, Mohan AMV, et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health
and fitness monitoring. Nat Commun 2016;7:11650. DOI PubMed PMC
82. Harvey CJ, LeBouf RF, Stefaniak AB. Formulation and stability of a novel artificial human sweat under conditions of storage and
use. Toxicol In Vitro 2010;24:1790-6. DOI PubMed
83. Liu YL, Liu R, Qin Y, et al. Flexible electrochemical urea sensor based on surface molecularly imprinted nanotubes for detection of
human sweat. Anal Chem 2018;90:13081-7. DOI
84. Dang W, Manjakkal L, Navaraj WT, Lorenzelli L, Vinciguerra V, Dahiya R. Stretchable wireless system for sweat pH monitoring.
Biosens Bioelectron 2018;107:192-202. DOI PubMed
85. Sempionatto JR, Khorshed AA, Ahmed A, et al. Epidermal enzymatic biosensors for sweat vitamin C: toward personalized nutrition.
ACS Sens 2020;5:1804-13. DOI
86. Xu Z, Liu Y, Lv M, Qiao X, Fan GC, Luo X. An anti-fouling wearable molecular imprinting sensor based on semi-interpenetrating
network hydrogel for the detection of tryptophan in sweat. Anal Chim Acta 2023;1283:341948. DOI PubMed
87. Sideris GA, Tsaramanidis S, Vyllioti AT, Njuguna N. The role of branched-chain amino acid supplementation in combination with
locoregional treatments for hepatocellular carcinoma: systematic review and meta-analysis. Cancers 2023;15:926. DOI PubMed
PMC
88. Holeček M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr
Metab 2018;15:33. DOI PubMed PMC
89. Tang W, Yin L, Sempionatto JR, Moon JM, Teymourian H, Wang J. Touch-based stressless cortisol sensing. Adv Mater
2021;33:2008465. DOI PubMed
90. Kamat V, Yapell D, Acosta Y, Tezsezen E, Mujawar MA, Bhansali S. Molecular imprinted polymer-based FET sensor for sensing of
sweat testosterone to monitor athletic performance. Meet Abstr 2022;MA2022-02:2291. DOI
91. Churcher NK, Upasham S, Rice P, Bhadsavle S, Prasad S. Development of a flexible, sweat-based neuropeptide Y detection
platform. RSC Adv 2020;10:23173-86. DOI PubMed PMC
92. Sonner Z, Wilder E, Heikenfeld J, et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and
biosensing implications. Biomicrofluidics 2015;9:031301. DOI PubMed PMC
93. Munje RD, Muthukumar S, Jagannath B, Prasad S. A new paradigm in sweat based wearable diagnostics biosensors using room
temperature ionic liquids (RTILs). Sci Rep 2017;7:1950. DOI PubMed PMC
94. Marques-Deak A, Cizza G, Eskandari F, et al; Premenopausal, Osteoporosis Women, Alendronate, Depression Study Group.
Measurement of cytokines in sweat patches and plasma in healthy women: validation in a controlled study. J Immunol Methods
2006;315:99-109. DOI
95. Liarte S, Bernabé-García Á, Nicolás FJ. Role of TGF-β in skin chronic wounds: a keratinocyte perspective. Cells 2020;9:306. DOI
PubMed PMC
96. Xiao J, Wang J, Luo Y, Xu T, Zhang X. Wearable plasmonic sweat biosensor for acetaminophen drug monitoring. ACS Sens
2023;8:1766-73. DOI
97. Tai LC, Ahn CH, Nyein HYY, et al. Nicotine monitoring with a wearable sweat band. ACS Sens 2020;5:1831-7. DOI
98. Xu C, Song Y, Sempionatto JR, et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat Electron
2024;7:168-79. DOI PubMed PMC
99. Bandodkar AJ, Jeang WJ, Ghaffari R, Rogers JA. Wearable sensors for biochemical sweat analysis. Annu Rev Anal Chem 2019;12:1-
22. DOI PubMed
100. Ghaffari R, Yang DS, Kim J, et al. State of sweat: emerging wearable systems for real-time, noninvasive sweat sensing and analytics.

