Page 114 - Read Online
P. 114

Hussain et al. Soft Sci. 2025, 5, 21  https://dx.doi.org/10.20517/ss.2025.02    Page 17 of 19

               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Ethical approval for this study was granted by the Institutional Review Board (IRB) of Alfaisal University
               [HA-01-R-058], and written informed consent was obtained from all patients.

               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2025.

               REFERENCES
               1.       Renbourn, E. T. The history of sweat and the sweat rash from earliest times to the end of the 18th century. J. Hist. Med. Allied. Sci.
                   1959, 14, 202-27.  DOI  PubMed
               2.       Renbourn, E. T. The natural history of insensible perspiration: a forgotten doctrine of health and disease. Med. Hist. 1960, 4, 135-52.
                   DOI  PubMed  PMC
               3.       El-Radhi AS. History of fever. In Clinical Manual of Fever in Children, Springer, Cham, 2018; pp. 287-97.  DOI
               4.       Baker, L. B.; Wolfe, A. S. Physiological mechanisms determining eccrine sweat composition. Eur. J. Appl. Physiol. 2020, 120, 719-52.
                   DOI  PubMed  PMC
               5.       Polychronopoulou, E.; Braconnier, P.; Burnier, M. New insights on the role of sodium in the physiological regulation of blood pressure
                   and development of hypertension. Front. Cardiovasc. Med. 2019, 6, 136.  DOI  PubMed  PMC
               6.       Yuan, X.; Li, C.; Yin, X.; et al. Epidermal wearable biosensors for monitoring biomarkers of chronic disease in sweat. Biosensors
                   2023, 13, 313.  DOI  PubMed  PMC
               7.       Davis, P. B. Cystic fibrosis since 1938. Am. J. Respir. Crit. Care. Med. 2006, 173, 475-82.  DOI  PubMed
               8.       Mattar, A. C.; Leone, C.; Rodrigues, J. C.; Adde, F. V. Sweat conductivity: an accurate diagnostic test for cystic fibrosis? J. Cyst.
                   Fibros. 2014, 13, 528-33.  DOI
               9.       Collie, J. T.; Massie, R. J.; Jones, O. A.; LeGrys, V. A.; Greaves, R. F. Sixty-five years since the New York heat wave: advances in
                   sweat testing for cystic fibrosis. Pediatr. Pulmonol. 2014, 49, 106-17.  DOI  PubMed
               10.      Farrell, P. M.; White, T. B.; Derichs, N.; Castellani, C.; Rosenstein, B. J. Cystic fibrosis diagnostic challenges over 4 decades:
                   historical perspectives and lessons learned. J. Pediatr. 2017, 181S, S16-26.  DOI
               11.      Hussain, J. N.; Mantri, N.; Cohen, M. M. Working up a good sweat - the challenges of standardising sweat collection for metabolomics
                   analysis. Clin. Biochem. Rev. 2017, 38, 13-34.  PubMed  PMC
               12.      Yeung, K. K.; Huang, T.; Hua, Y.; Zhang, K.; Yuen, M. M. F.; Gao, Z. Recent advances in electrochemical sensors for wearable sweat
                   monitoring: a review. IEEE. Sensors. J. 2021, 21, 14522-39.  DOI
               13.      Chung, M.; Fortunato, G.; Radacsi, N. Wearable flexible sweat sensors for healthcare monitoring: a review. J. R. Soc. Interface. 2019,
                   16, 20190217.  DOI  PubMed  PMC
               14.      Huestis, M. A.; Oyler, J. M.; Cone, E. J.; Wstadik, A. T.; Schoendorfer, D.; Joseph, R. E. J. Sweat testing for cocaine, codeine and
                   metabolites by gas chromatography-mass spectrometry. J. Chromatogr. B. Biomed. Sci. Appl. 1999, 733, 247-64.  DOI  PubMed
               15.      Gao, W.; Brooks, G. A.; Klonoff, D. C. Wearable physiological systems and technologies for metabolic monitoring. J. Appl. Physiol.
                   2018, 124, 548-56.  DOI  PubMed
               16.      Xu, J.; Fang, Y.; Chen, J. Wearable biosensors for non-invasive sweat diagnostics. Biosensors 2021, 11, 245.  DOI  PubMed  PMC
               17.      Taylor, J. R.; Watson, I. D.; Tames, F. J.; Lowe, D. Detection of drug use in a methadone maintenance clinic: sweat patches versus
                   urine testing. Addiction 1998, 93, 847-53.  DOI
               18.      Kintz, P.; Tracqui, A.; Mangin, P.; Edel, Y. Sweat testing in opioid users with a sweat patch. J. Anal. Toxicol. 1996, 20, 393-7.  DOI
               19.      De Giovanni N, Fucci N. The current status of sweat testing for drugs of abuse: a review. Curr. Med. Chem. 2013, 20, 545-61.  DOI
                   PubMed
               20.      Bariya, M.; Nyein, H. Y. Y.; Javey, A. Wearable sweat sensors. Nat. Electron. 2018, 1, 160-71.  DOI
               21.      Currano, L. J.; Sage, F. C.; Hagedon, M.; Hamilton, L.; Patrone, J.; Gerasopoulos, K. Wearable sensor system for detection of lactate
                   in sweat. Sci. Rep. 2018, 8, 15890.  DOI  PubMed  PMC
               22.      Brothers, M. C.; DeBrosse, M.; Grigsby, C. C.; et al. Achievements and challenges for real-time sensing of analytes in sweat within
                   wearable platforms. Acc. Chem. Res. 2019, 52, 297-306.  DOI
               23.      Childs, A.; Mayol, B.; Lasalde-Ramírez, J. A.; Song, Y.; Sempionatto, J. R.; Gao, W. Diving into sweat: advances, challenges, and
                   future directions in wearable sweat sensing. ACS. Nano. 2024, 18, 24605-16.  DOI  PubMed
               24.      Ma, S.; Wan, Z.; Wang, C.; et al. Ultra-sensitive and stable multiplexed biosensors array in fully printed and integrated platforms for
   109   110   111   112   113   114   115   116   117   118   119