Page 115 - Read Online
P. 115

Page 18 of 19                        Hussain et al. Soft Sci. 2025, 5, 21  https://dx.doi.org/10.20517/ss.2025.02

                   reliable perspiration analysis. Adv. Mater. 2024, 36, e2311106.  DOI  PubMed
               25.      Alsunaidi, B.; Althobaiti, M.; Tamal, M.; Albaker, W.; Al-Naib, I. A review of non-invasive optical systems for continuous blood
                   glucose monitoring. Sensors 2021, 21, 6820.  DOI  PubMed  PMC
               26.      Manjakkal, L.; Yin, L.; Nathan, A.; Wang, J.; Dahiya, R. Energy autonomous sweat-based wearable systems. Adv. Mater. 2021, 33,
                   e2100899.  DOI  PubMed  PMC
               27.      Xiao, G.; He, J.; Qiao, Y.; et al. Facile and low-cost fabrication of a thread/paper-based wearable system for simultaneous detection of
                   lactate and pH in human sweat. Adv. Fiber. Mater. 2020, 2, 265-78.  DOI
               28.      Bandodkar, A. J.; Gutruf, P.; Choi, J.; et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous
                   electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 2019, 5, eaav3294.  DOI  PubMed  PMC
               29.      Promphet, N.; Rattanawaleedirojn, P.; Siralertmukul, K.; et al. Non-invasive textile based colorimetric sensor for the simultaneous
                   detection of sweat pH and lactate. Talanta 2019, 192, 424-30.  DOI
               30.      Wang, J.; Luo, Y.; Zhou, Z.; Xiao, J.; Xu, T.; Zhang, X. Epidermal wearable optical sensors for sweat monitoring. Commun. Mater.
                   2024, 5, 518.  DOI
               31.      Nie, N.; Gong, X.; Gong, C.; et al. A wearable thin-film hydrogel laser for functional sensing on skin. Anal. Chem. 2024, 96, 9159-66.
                   DOI
               32.      Chen, S.; Qiao, Z.; Niu, Y.; et al. Wearable flexible microfluidic sensing technologies. Nat. Rev. Bioeng. 2023, 1, 950-71.  DOI
               33.      Mohan, A.; Rajendran, V.; Mishra, R. K.; Jayaraman, M. Recent advances and perspectives in sweat based wearable electrochemical
                   sensors. TrAC. Trends. Anal. Chem. 2020, 131, 116024.  DOI
               34.      Ghaffari, R.; Yang, D. S.; Kim, J.; et al. State of sweat: emerging wearable systems for real-time, noninvasive sweat sensing and
                   analytics. ACS. Sens. 2021, 6, 2787-801.  DOI  PubMed  PMC
               35.      Bandodkar, A. J.; Jeang, W. J.; Ghaffari, R.; Rogers, J. A. Wearable sensors for biochemical sweat analysis. Annu. Rev. Anal. Chem.
                   2019, 12, 1-22.  DOI  PubMed
               36.      Choi, J.; Ghaffari, R.; Baker, L. B.; Rogers, J. A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 2018, 4,
                   eaar3921.  DOI  PubMed  PMC
               37.      Zhang, S.; Tan, R.; Xu, X.; Iqbal, S.; Hu, J. Fibers/textiles-based flexible sweat sensors: a review. ACS. Mater. Lett. 2023, 5, 1420-40.
                   DOI
               38.      Parrilla, M.; Guinovart, T.; Ferré, J.; Blondeau, P.; Andrade, F. J. A wearable paper-based sweat sensor for human perspiration
                   monitoring. Adv. Healthc. Mater. 2019, 8, e1900342.  DOI  PubMed
               39.      Song, J.; Shi, R.; Bai, X.; Algadi, H.; Sridhar, D. An overview of surface with controllable wettability for microfluidic system,
                   intelligent cleaning, water harvesting, and surface protection. Adv. Compos. Hybrid. Mater. 2023, 6, 603.  DOI
               40.      Hussain, S.; Zourob, M. Solid-state cholesteric liquid crystals as an emerging platform for the development of optical photonic sensors.
                   Small 2024, 20, e2304590.  DOI  PubMed
               41.      Myung, D.; Hussain, S.; Park, S. Photonic calcium and humidity array sensor prepared with reactive cholesteric liquid crystal
                   mesogens. Sens. Actuators. B. Chem. 2019, 298, 126894.  DOI
               42.      Stumpel, J. E.; Gil, E. R.; Spoelstra, A. B.; Bastiaansen, C. W. M.; Broer, D. J.; Schenning, A. P. H. J. Stimuli-responsive materials
                   based on interpenetrating polymer liquid crystal hydrogels. Adv. Funct. Mater. 2015, 25, 3314-20.  DOI
               43.      Wang, T.; Zhao, J.; Wu, L.; Liu, W.; Li, Y.; Yang, Y. Polymer network film with double reflection bands prepared using a
                   thermochromic cholesteric liquid crystal mixture. ACS. Appl. Mater. Interfaces. 2024, 16, 18001-7.  DOI
               44.      Hussain, S.; Park, S. Y. Photonic cholesteric liquid-crystal elastomers with reprogrammable helical pitch and handedness. ACS. Appl.
                   Mater. Interfaces. 2021, 13, 59275-87.  DOI  PubMed
               45.      Yeh, T. Y.; Liu, M. F.; Lin, R. D.; Hwang, S. J. Alcohol selective optical sensor based on porous cholesteric liquid crystal polymer
                   networks. Molecules 2022, 27, 773.  DOI  PubMed  PMC
               46.      Hussain, S.; Park, S. Y. Sweat-based noninvasive skin-patchable urea biosensors with photonic interpenetrating polymer network films
                   integrated into PDMS chips. ACS. Sens. 2020, 5, 3988-98.  DOI  PubMed
               47.      Hussain, S.; Al-Tabban, A.; Zourob, M. Aptameric photonic structure-based optical biosensor for the detection of microcystin.
                   Biosens. Bioelectron. 2024, 260, 116413.  DOI  PubMed
               48.      Hussain, S.; Park, S. Optical glucose biosensor based on photonic interpenetrating polymer network with solid-state cholesteric liquid
                   crystal and cationic polyelectrolyte. Sens. Actuators. B. Chem. 2020, 316, 128099.  DOI
               49.      Noh, K.; Park, S. Biosensor array of interpenetrating polymer network with photonic film templated from reactive cholesteric liquid
                   crystal and enzyme-immobilized hydrogel polymer. Adv. Funct. Mater. 2018, 28, 1707562.  DOI
               50.      Munir, S.; Hussain, S.; Park, S. Y. Patterned photonic array based on an intertwined polymer network functionalized with a
                   nonenzymatic moiety for the visual detection of glucose. ACS. Appl. Mater. Interfaces. 2019, 11, 37434-41.  DOI
               51.      Zhang, P.; de, H. L. T.; Debije, M. G.; Schenning, A. P. H. J. Liquid crystal-based structural color actuators. Light. Sci. Appl. 2022, 11,
                   248.  DOI  PubMed  PMC
               52.      Laochai, T.; Moonla, C.; Moon, J.; et al. Touch–based potentiometric sensors for simultaneous detection of urea and ammonium from
                   fingertip sweat. Sens. Actuators. B. Chem. 2024, 413, 135898.  DOI
               53.      Lee, H.; Song, C.; Hong, Y. S.; et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug
                   delivery module. Sci. Adv. 2017, 3, e1601314.  DOI  PubMed  PMC
               54.      Salatiello, S.; Spinelli, M.; Cassiano, C.; Amoresano, A.; Marini, F.; Cinti, S. Sweat urea bioassay based on degradation of Prussian
   110   111   112   113   114   115   116   117   118   119   120