Page 115 - Read Online
P. 115
Page 18 of 19 Hussain et al. Soft Sci. 2025, 5, 21 https://dx.doi.org/10.20517/ss.2025.02
reliable perspiration analysis. Adv. Mater. 2024, 36, e2311106. DOI PubMed
25. Alsunaidi, B.; Althobaiti, M.; Tamal, M.; Albaker, W.; Al-Naib, I. A review of non-invasive optical systems for continuous blood
glucose monitoring. Sensors 2021, 21, 6820. DOI PubMed PMC
26. Manjakkal, L.; Yin, L.; Nathan, A.; Wang, J.; Dahiya, R. Energy autonomous sweat-based wearable systems. Adv. Mater. 2021, 33,
e2100899. DOI PubMed PMC
27. Xiao, G.; He, J.; Qiao, Y.; et al. Facile and low-cost fabrication of a thread/paper-based wearable system for simultaneous detection of
lactate and pH in human sweat. Adv. Fiber. Mater. 2020, 2, 265-78. DOI
28. Bandodkar, A. J.; Gutruf, P.; Choi, J.; et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous
electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 2019, 5, eaav3294. DOI PubMed PMC
29. Promphet, N.; Rattanawaleedirojn, P.; Siralertmukul, K.; et al. Non-invasive textile based colorimetric sensor for the simultaneous
detection of sweat pH and lactate. Talanta 2019, 192, 424-30. DOI
30. Wang, J.; Luo, Y.; Zhou, Z.; Xiao, J.; Xu, T.; Zhang, X. Epidermal wearable optical sensors for sweat monitoring. Commun. Mater.
2024, 5, 518. DOI
31. Nie, N.; Gong, X.; Gong, C.; et al. A wearable thin-film hydrogel laser for functional sensing on skin. Anal. Chem. 2024, 96, 9159-66.
DOI
32. Chen, S.; Qiao, Z.; Niu, Y.; et al. Wearable flexible microfluidic sensing technologies. Nat. Rev. Bioeng. 2023, 1, 950-71. DOI
33. Mohan, A.; Rajendran, V.; Mishra, R. K.; Jayaraman, M. Recent advances and perspectives in sweat based wearable electrochemical
sensors. TrAC. Trends. Anal. Chem. 2020, 131, 116024. DOI
34. Ghaffari, R.; Yang, D. S.; Kim, J.; et al. State of sweat: emerging wearable systems for real-time, noninvasive sweat sensing and
analytics. ACS. Sens. 2021, 6, 2787-801. DOI PubMed PMC
35. Bandodkar, A. J.; Jeang, W. J.; Ghaffari, R.; Rogers, J. A. Wearable sensors for biochemical sweat analysis. Annu. Rev. Anal. Chem.
2019, 12, 1-22. DOI PubMed
36. Choi, J.; Ghaffari, R.; Baker, L. B.; Rogers, J. A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 2018, 4,
eaar3921. DOI PubMed PMC
37. Zhang, S.; Tan, R.; Xu, X.; Iqbal, S.; Hu, J. Fibers/textiles-based flexible sweat sensors: a review. ACS. Mater. Lett. 2023, 5, 1420-40.
DOI
38. Parrilla, M.; Guinovart, T.; Ferré, J.; Blondeau, P.; Andrade, F. J. A wearable paper-based sweat sensor for human perspiration
monitoring. Adv. Healthc. Mater. 2019, 8, e1900342. DOI PubMed
39. Song, J.; Shi, R.; Bai, X.; Algadi, H.; Sridhar, D. An overview of surface with controllable wettability for microfluidic system,
intelligent cleaning, water harvesting, and surface protection. Adv. Compos. Hybrid. Mater. 2023, 6, 603. DOI
40. Hussain, S.; Zourob, M. Solid-state cholesteric liquid crystals as an emerging platform for the development of optical photonic sensors.
Small 2024, 20, e2304590. DOI PubMed
41. Myung, D.; Hussain, S.; Park, S. Photonic calcium and humidity array sensor prepared with reactive cholesteric liquid crystal
mesogens. Sens. Actuators. B. Chem. 2019, 298, 126894. DOI
42. Stumpel, J. E.; Gil, E. R.; Spoelstra, A. B.; Bastiaansen, C. W. M.; Broer, D. J.; Schenning, A. P. H. J. Stimuli-responsive materials
based on interpenetrating polymer liquid crystal hydrogels. Adv. Funct. Mater. 2015, 25, 3314-20. DOI
43. Wang, T.; Zhao, J.; Wu, L.; Liu, W.; Li, Y.; Yang, Y. Polymer network film with double reflection bands prepared using a
thermochromic cholesteric liquid crystal mixture. ACS. Appl. Mater. Interfaces. 2024, 16, 18001-7. DOI
44. Hussain, S.; Park, S. Y. Photonic cholesteric liquid-crystal elastomers with reprogrammable helical pitch and handedness. ACS. Appl.
Mater. Interfaces. 2021, 13, 59275-87. DOI PubMed
45. Yeh, T. Y.; Liu, M. F.; Lin, R. D.; Hwang, S. J. Alcohol selective optical sensor based on porous cholesteric liquid crystal polymer
networks. Molecules 2022, 27, 773. DOI PubMed PMC
46. Hussain, S.; Park, S. Y. Sweat-based noninvasive skin-patchable urea biosensors with photonic interpenetrating polymer network films
integrated into PDMS chips. ACS. Sens. 2020, 5, 3988-98. DOI PubMed
47. Hussain, S.; Al-Tabban, A.; Zourob, M. Aptameric photonic structure-based optical biosensor for the detection of microcystin.
Biosens. Bioelectron. 2024, 260, 116413. DOI PubMed
48. Hussain, S.; Park, S. Optical glucose biosensor based on photonic interpenetrating polymer network with solid-state cholesteric liquid
crystal and cationic polyelectrolyte. Sens. Actuators. B. Chem. 2020, 316, 128099. DOI
49. Noh, K.; Park, S. Biosensor array of interpenetrating polymer network with photonic film templated from reactive cholesteric liquid
crystal and enzyme-immobilized hydrogel polymer. Adv. Funct. Mater. 2018, 28, 1707562. DOI
50. Munir, S.; Hussain, S.; Park, S. Y. Patterned photonic array based on an intertwined polymer network functionalized with a
nonenzymatic moiety for the visual detection of glucose. ACS. Appl. Mater. Interfaces. 2019, 11, 37434-41. DOI
51. Zhang, P.; de, H. L. T.; Debije, M. G.; Schenning, A. P. H. J. Liquid crystal-based structural color actuators. Light. Sci. Appl. 2022, 11,
248. DOI PubMed PMC
52. Laochai, T.; Moonla, C.; Moon, J.; et al. Touch–based potentiometric sensors for simultaneous detection of urea and ammonium from
fingertip sweat. Sens. Actuators. B. Chem. 2024, 413, 135898. DOI
53. Lee, H.; Song, C.; Hong, Y. S.; et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug
delivery module. Sci. Adv. 2017, 3, e1601314. DOI PubMed PMC
54. Salatiello, S.; Spinelli, M.; Cassiano, C.; Amoresano, A.; Marini, F.; Cinti, S. Sweat urea bioassay based on degradation of Prussian

