Page 11 - Read Online
P. 11

Brasier et al. Soft Sci 2024;4:6  https://dx.doi.org/10.20517/ss.2023.39         Page 9 of 10

                   vibration. Scand J Work Environ Health 2003;29:216-9.  DOI  PubMed
               15.      Grijsen ML, van Zuuren EJ. Gustatory hyperhidrosis. JAMA Dermatol 2021;157:1497.  DOI  PubMed
               16.      Simmers P, Li SK, Kasting G, Heikenfeld J. Prolonged and localized sweat stimulation by iontophoretic delivery of the slowly-
                   metabolized cholinergic agent carbachol. J Dermatol Sci 2018;89:40-51.  DOI  PubMed
               17.      Boulant JA. Hypothalamic mechanisms in thermoregulation. Fed Proc 1981;40:2843-50.  PubMed
               18.      Nadel ER, Mitchell JW, Saltin B, Stolwijk JA. Peripheral modifications to the central drive for sweating. J Appl Physiol 1971;31:828-
                   33.  DOI
               19.      Nadel ER, Bullard RW, Stolwijk JA. Importance of skin temperature in the regulation of sweating. J Appl Physiol 1971;31:80-7.  DOI
                   PubMed
               20.      Nadel ER, Pandolf KB, Roberts MF, Stolwijk JA. Mechanisms of thermal acclimation to exercise and heat. J Appl Physiol
                   1974;37:515-20.  DOI
               21.      Havenith G, Fogarty A, Bartlett R, Smith CJ, Ventenat V. Male and female upper body sweat distribution during running measured
                   with technical absorbents. Eur J Appl Physiol 2008;104:245-55.  DOI  PubMed
               22.      Coull NA, West AM, Hodder SG, Wheeler P, Havenith G. Body mapping of regional sweat distribution in young and older males. Eur
                   J Appl Physiol 2021;121:109-25.  DOI  PubMed  PMC
               23.      Shapiro Y, Pandolf KB, Goldman RF. Predicting sweat loss response to exercise, environment and clothing. Eur J Appl Physiol Occup
                   Physiol 1982;48:83-96.  DOI  PubMed
               24.      Armstrong LE. Heat acclimatization. In: Fahey TD, editor. Encyclopedia of sports medicine and science. 1998. Available from: https://
                   www.sportsci.org/encyc/. [Last accessed on 27 Dec 2023].
               25.      Pandolf K, Sawka M, Gonzalez R. Human performance physiology and environmental medicine at terrestrial extremes. 1988.
                   Available from: https://api.semanticscholar.org/CorpusID:126430352. [Last accessed on 5 Jul 2023].
               26.      Institute of Medicine (US) Committee on Military Nutrition Research. Nutritional needs in hot environments: applications for military
                   personnel in field operations. Washington (DC): National Academies Press (US); 1993. Available from: https://www.ncbi.nlm.nih.gov/
                   books/NBK236233/. [Last accessed on 26 Dec 2023].
               27.      Emrich HM, Stoll E, Friolet B, Colombo JP, Richterich R, Rossi E. Sweat composition in relation to rate of sweating in patients with
                   cystic fibrosis of the pancreas. Pediatr Res 1968;2:464-78.  DOI  PubMed
               28.      Lezana JL, Vargas MH, Karam-Bechara J, Aldana RS, Furuya MEY. Sweat conductivity and chloride titration for cystic fibrosis
                   diagnosis in 3834 subjects. J Cyst Fibros 2003;2:1-7.  DOI  PubMed
               29.      Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science 2011;333:838-43.  DOI
               30.      Choi J, Ghaffari R, Baker LB, Rogers JA. Skin-interfaced systems for sweat collection and analytics. Sci Adv 2018;4:eaar3921.  DOI
                   PubMed  PMC
               31.      Liu Y, Pharr M, Salvatore GA. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS
                   Nano 2017;11:9614-35.  DOI  PubMed
               32.      Legner C, Kalwa U, Patel V, Chesmore A, Pandey S. Sweat sensing in the smart wearables era: towards integrative, multifunctional
                   and body-compliant perspiration analysis. Sens Actuator A Phys 2019;296:200-21.  DOI
               33.      Gao F, Liu C, Zhang L, et al. Wearable and flexible electrochemical sensors for sweat analysis: a review. Microsyst Nanoeng 2023;9:1.
                   DOI  PubMed  PMC
               34.      Nyein HYY, Bariya M, Tran B, et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat Commun
                   2021;12:1823.  DOI  PubMed  PMC
               35.      Koh A, Kang D, Xue Y, et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci
                   Transl Med 2016;8:366ra165.  DOI  PubMed  PMC
               36.      Matzeu G, Fay C, Vaillant A, Coyle S, Diamond D. A wearable device for monitoring sweat rates via image analysis. IEEE Trans
                   Biomed Eng 2016;63:1672-80.  DOI
               37.      Ghaffari R, Aranyosi AJ, Lee SP, Model JB, Baker LB. The Gx sweat patch for personalized hydration management. Nat Rev Bioeng
                   2023;1:5-7.  DOI
               38.      Nyein HYY, Tai LC, Ngo QP, et al. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens
                   2018;3:944-52.  DOI
               39.      Choi DH, Gonzales M, Kitchen GB, Phan DT, Searson PC. A capacitive sweat rate sensor for continuous and real-time monitoring of
                   sweat loss. ACS Sens 2020;5:3821-6.  DOI  PubMed
               40.      Kim SB, Lee K, Raj MS, et al. Soft, skin-interfaced microfluidic systems with wireless, battery-free electronics for digital, real-time
                   tracking of sweat loss and electrolyte composition. Small 2018;14:1802876.  DOI
                                                                                                         +
               41.      Yuan Z, Hou L, Bariya M, et al. A multi-modal sweat sensing patch for cross-verification of sweat rate, total ionic charge, and Na
                   concentration. Lab Chip 2019;19:3179-89.  DOI
               42.      Kwon K, Kim JU, Deng Y, et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in
                   real time. Nat Electron 2021;4:302-12.  DOI
               43.      Liu S, Yang DS, Wang S, et al. Soft, environmentally degradable microfluidic devices for measurement of sweat rate and total sweat
                   loss and for colorimetric analysis of sweat biomarkers. EcoMat 2023;5:e12270.  DOI
               44.      Emaminejad S, Gao W, Wu E, et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using
                   a fully integrated wearable platform. Proc Natl Acad Sci U S A 2017;114:4625-30.  DOI  PubMed  PMC
   6   7   8   9   10   11   12   13   14   15   16