Page 26 - Read Online
P. 26
Xiao et al. Soft Sci 2023;3:11 https://dx.doi.org/10.20517/ss.2023.03 Page 23 of 26
64. Shahsavan H, Aghakhani A, Zeng H, et al. Bioinspired underwater locomotion of light-driven liquid crystal gels. Proc Natl Acad Sci
USA 2020;117:5125-33. DOI PubMed PMC
65. Wani OM, Zeng H, Priimagi A. A light-driven artificial flytrap. Nat Commun 2017;8:15546. DOI PubMed PMC
66. Pei Z, Yang Y, Chen Q, Terentjev EM, Wei Y, Ji Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent
bonds. Nat Mater 2014;13:36-41. DOI
67. Zou W, Dong J, Luo Y, Zhao Q, Xie T. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv
Mater 2017;29:1606100. DOI PubMed
68. Cui Y, Wang C, Sim K, et al. A simple analytical thermo-mechanical model for liquid crystal elastomer bilayer structures. AIP Adv
2018;8:025215. DOI
69. Cui Y, Yin Y, Wang C, et al. Transient thermo-mechanical analysis for bimorph soft robot based on thermally responsive liquid
crystal elastomers. Appl Math Mech Engl Ed 2019;40:943-52. DOI
70. Guin T, Settle MJ, Kowalski BA, et al. Layered liquid crystal elastomer actuators. Nat Commun 2018;9:2531. DOI PubMed PMC
71. Ohm C, Fleischmann E, Kraus I, Serra C, Zentel R. Control of the properties of micrometer-sized actuators from liquid crystalline
elastomers prepared in a microfluidic setup. Adv Funct Mater 2010;20:4314-22. DOI
72. de Jeu WH, Obraztsov EP, Ostrovskii BI, et al. Order and strain in main-chain smectic liquid-crystalline polymers and elastomers.
Eur Phys J E 2008;25:117-8. DOI
73. Komp A, Finkelmann H. A new type of macroscopically oriented smectic-a liquid crystal elastomer. Macromol Rapid Commun
2007;28:55-62. DOI
74. Beyer P, Krueger M, Giesselmann F, Zentel R. Photoresponsive ferroelectric liquid-crystalline polymers. Adv Funct Mater
2007;17:109-14. DOI
75. Nishikawa E, Finkelmann H. Smectic-A liquid single crystal elastomers - strain induced break-down of smectic layers. Available
from: https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1521-3935(19990201)200:2%3C312::AID-MACP312%3E3.0.CO;2-Y
[Last accessed on 12 Apr 2023].
76. Thomsen DL, Keller P, Naciri J, et al. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules
2001;34:5868-75. DOI
77. Ahir S, Tajbakhsh A, Terentjev E. Self-assembled shape-memory fibers of triblock liquid-crystal polymers. Adv Funct Mater
2006;16:556-60. DOI
78. Soltani M, Raahemifar K, Nokhosteen A, Kashkooli FM, Zoudani EL. Numerical methods in studies of liquid crystal elastomers.
Polymers 2021;13:1650. DOI PubMed PMC
79. Yang R, Zhao Y. Non-uniform optical inscription of actuation domains in a liquid crystal polymer of uniaxial orientation: an
approach to complex and programmable shape changes. Angew Chem Int Ed Engl 2017;56:14202-6. DOI
80. Baumgartner M, Hartmann F, Drack M, et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics.
Nat Mater 2020;19:1102-9. DOI
81. Ware TH, McConney ME, Wie JJ, Tondiglia VP, White TJ. Actuating materials. Voxelated liquid crystal elastomers. Science
2015;347:982-4. DOI PubMed
82. Konya A, Gimenez-pinto V, Selinger RLB. Modeling defects, shape evolution, and programmed auto-origami in liquid crystal
elastomers. Front Mater 2016;3:24. DOI
83. McConney ME, Martinez A, Tondiglia VP, et al. Topography from topology: photoinduced surface features generated in liquid
crystal polymer networks. Adv Mater 2013;25:5880-5. DOI
84. Xia Y, Zhang X, Yang S. Instant locking of molecular ordering in liquid crystal elastomers by oxygen-mediated thiol-acrylate click
reactions. Angew Chem Int Ed Engl 2018;57:5665-8. DOI
85. Xia Y, Cedillo-Servin G, Kamien RD, Yang S. Guided folding of nematic liquid crystal elastomer sheets into 3D via patterned 1D
microchannels. Adv Mater 2016;28:9637-43. DOI PubMed
86. Saed MO, Ambulo CP, Kim H, et al. Molecularly-engineered, 4D-printed liquid crystal elastomer actuators. Adv Funct Mater
2019;29:1806412. DOI
87. Jampani VSR, Mulder DJ, De Sousa KR, Gélébart A, Lagerwall JPF, Schenning APHJ. Micrometer-scale porous buckling shell
actuators based on liquid crystal networks. Adv Funct Mater 2018;28:1801209. DOI
88. He Q, Wang Z, Wang Y, Song Z, Cai S. Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator. ACS Appl
Mater Interf 2020;12:35464-74. DOI
89. Zhai Y, Ng TN. Self-sustained robots based on functionally graded elastomeric actuators carrying up to 22 times their body weight.
Adv Intell Syst 2021;[Accepted]:2100085. DOI
90. Ambulo CP, Burroughs JJ, Boothby JM, Kim H, Shankar MR, Ware TH. Four-dimensional printing of liquid crystal elastomers. ACS
Appl Mater Interf 2017;9:37332-9. DOI PubMed
91. Ford MJ, Palaniswamy M, Ambulo CP, Ware TH, Majidi C. Size of liquid metal particles influences actuation properties of a liquid
crystal elastomer composite. Soft Matter 2020;16:5878-85. DOI PubMed
92. Liu J, Gao Y, Wang H, Poling-skutvik R, Osuji CO, Yang S. Shaping and locomotion of soft robots using filament actuators made
from liquid crystal elastomer-carbon nanotube composites. Adv Intell Syst 2020;2:1900163. DOI
93. Slavney AH, Hu T, Lindenberg AM, Karunadasa HI. A bismuth-halide double perovskite with long carrier recombination lifetime for
photovoltaic applications. J Am Chem Soc 2016;138:2138-41. DOI PubMed

