Page 151 - Read Online
P. 151

Page 14 of 15                              Li et al. Soft Sci 2023;3:22  https://dx.doi.org/10.20517/ss.2023.11


               8.       Orban M, Elsamanty M, Guo K, Zhang S, Yang H. A review of brain activity and EEG-based brain-computer interfaces for
                   rehabilitation application. Bioengineering 2022;9:768.  DOI  PubMed  PMC
               9.       Hsieh JC, Alawieh H, Li Y, et al. A highly stable electrode with low electrode-skin impedance for wearable brain-computer interface.
                   Biosens Bioelectron 2022;218:114756.  DOI
               10.      Miskowiak KW, Jespersen AE, Kessing LV, et al. Cognition assessment in virtual reality: validity and feasibility of a novel virtual
                   reality test for real-life cognitive functions in mood disorders and psychosis spectrum disorders. J Psychiatr Res 2021;145:182-9.  DOI
               11.      Maggio MG, Latella D, Maresca G, et al. Virtual reality and cognitive rehabilitation in people with stroke: an overview. J Neurosci
                   Nurs 2019;51:101-5.  DOI
               12.      Tashjian VC, Mosadeghi S, Howard AR, et al. Virtual reality for management of pain in hospitalized patients: results of a controlled
                   trial. JMIR Ment Health 2017;4:e9.  DOI  PubMed  PMC
               13.      Coogan CG, He B. Brain-computer interface control in a virtual reality environment and applications for the internet of things. IEEE
                   Access 2018;6:10840-9.  DOI  PubMed  PMC
               14.      Cipresso P, Giglioli IAC, Raya MA, Riva G. The past, present, and future of virtual and augmented reality research: a network and
                   cluster analysis of the literature. Front Psychol 2018;9:2086.  DOI
               15.     Krokos E, Varshney A. Quantifying VR cybersickness using EEG. Virtual Reality 2022;26:77-89.  DOI
               16.      Suhaimi NS, Mountstephens J, Teo J. A dataset for emotion recognition using virtual reality and EEG (DER-VREEG): emotional state
                   classification using low-cost wearable VR-EEG headsets. Big Data Cogn Comput 2022;6:16.  DOI
               17.      Zhang Y, Zhang L, Hua H, et al. Relaxation degree analysis using frontal electroencephalogram under virtual reality relaxation scenes.
                   Front Neurosci 2021;15:719869.  DOI  PubMed  PMC
               18.      Kuang F, Shu L, Hua H, et al. Cross-subject and cross-device wearable EEG emotion recognition using frontal EEG under virtual
                   reality scenes. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM); Houston, TX, USA; 2021. p. 3630-7.
                   DOI
               19.      Li G, Wu J, Xia Y, He Q, Jin H. Review of semi-dry electrodes for EEG recording. J Neural Eng 2020;17:051004.  DOI  PubMed
               20.      Goulart LA, Guaraldo TT, Lanza MRV. A novel electrochemical sensor based on printex L6 carbon black carrying CuO/Cu O
                                                                                                        2
                   nanoparticles for propylparaben determination. Electroanalysis 2018;30:2967-76.  DOI
               21.      Luo J, Sun C, Chang B, et al. MXene-enabled self-adaptive hydrogel interface for active electroencephalogram interactions. ACS Nano
                   2022;16:19373-84.  DOI
               22.      Wang C, Wang H, Wang B, et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci Adv
                   2022;8:eabo1396.  DOI  PubMed  PMC
               23.      Wang R, Jiang X, Wang W, Li Z. A microneedle electrode array on flexible substrate for long-term EEG monitoring. Sens Actuators B
                   Chem 2017;244:750-8.  DOI
               24.      Song Y, Li P, Li M, et al. Fabrication of chitosan/Au-TiO  nanotube-based dry electrodes for electroencephalography recording. Mater
                                                        2
                   Sci Eng C Mater Biol Appl 2017;79:740-7.  DOI  PubMed
               25.      Aghazadeh H, Yazdi MK, Kolahi A, et al. Synthesis, characterization and performance enhancement of dry polyaniline-coated
                   neuroelectrodes for electroencephalography measurement. Curr Appl Phys 2021;27:43-50.  DOI
               26.      Liu J, Liu X, He E, et al. A novel dry-contact electrode for measuring electroencephalography signals. Sens Actuator A Phys
                   2019;294:73-80.  DOI
               27.      Arai M, Kudo Y, Miki N. Polymer-based candle-shaped microneedle electrodes for electroencephalography on hairy skin. Jpn J Appl
                   Phys 2016;55:06GP16.  DOI
               28.      Zhang L, Kumar KS, He H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal
                   biopotential monitoring. Nat Commun 2020;11:4683.  DOI  PubMed  PMC
               29.      Lin S, Liu J, Li W, et al. A flexible, robust, and gel-free electroencephalogram electrode for noninvasive brain-computer interfaces.
                   Nano Lett 2019;19:6853-61.  DOI
               30.      Baek HJ, Lee HJ, Lim YG, Park KS. Conductive polymer foam surface improves the performance of a capacitive EEG electrode.
                   IEEE Trans Biomed Eng 2012;59:3422-31.  DOI  PubMed
               31.      Shu L, Xu T, Xu X. Multilayer sweat-absorbable textile electrode for EEG measurement in forehead site. IEEE Sensors J
                   2019;19:5995-6005.  DOI
               32.      Liu J, Lin S, Li W, et al. Ten-hour stable noninvasive brain-computer interface realized by semidry hydrogel-based electrodes.
                   Research 2022;2022:9830457.  DOI  PubMed  PMC
               33.      Kayser  LV,  Lipomi  DJ.  Stretchable  conductive  polymers  and  composites  based  on  PEDOT  and  PEDOT:PSS.  Adv  Mater
                   2019;31:1806133.  DOI  PubMed  PMC
               34.      Ding Y, Yang J, Tolle CR, Zhu Z. Flexible and compressible PEDOT:PSS@melamine conductive sponge prepared via one-step dip
                   coating as piezoresistive pressure sensor for human motion detection. ACS Appl Mater Interfaces 2018;10:16077-86.  DOI
               35.      Cui XT, Zhou DD. Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation. IEEE Trans Neural Syst Rehabil Eng
                   2007;15:502-8.  DOI  PubMed
               36.      Zucca A, Cipriani C, Sudha, et al. Tattoo conductive polymer nanosheets for skin-contact applications. Adv Healthc Mater 2015;4:983-
                   90.  DOI
               37.      Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component
   146   147   148   149   150   151   152   153   154   155   156