Page 151 - Read Online
P. 151
Page 14 of 15 Li et al. Soft Sci 2023;3:22 https://dx.doi.org/10.20517/ss.2023.11
8. Orban M, Elsamanty M, Guo K, Zhang S, Yang H. A review of brain activity and EEG-based brain-computer interfaces for
rehabilitation application. Bioengineering 2022;9:768. DOI PubMed PMC
9. Hsieh JC, Alawieh H, Li Y, et al. A highly stable electrode with low electrode-skin impedance for wearable brain-computer interface.
Biosens Bioelectron 2022;218:114756. DOI
10. Miskowiak KW, Jespersen AE, Kessing LV, et al. Cognition assessment in virtual reality: validity and feasibility of a novel virtual
reality test for real-life cognitive functions in mood disorders and psychosis spectrum disorders. J Psychiatr Res 2021;145:182-9. DOI
11. Maggio MG, Latella D, Maresca G, et al. Virtual reality and cognitive rehabilitation in people with stroke: an overview. J Neurosci
Nurs 2019;51:101-5. DOI
12. Tashjian VC, Mosadeghi S, Howard AR, et al. Virtual reality for management of pain in hospitalized patients: results of a controlled
trial. JMIR Ment Health 2017;4:e9. DOI PubMed PMC
13. Coogan CG, He B. Brain-computer interface control in a virtual reality environment and applications for the internet of things. IEEE
Access 2018;6:10840-9. DOI PubMed PMC
14. Cipresso P, Giglioli IAC, Raya MA, Riva G. The past, present, and future of virtual and augmented reality research: a network and
cluster analysis of the literature. Front Psychol 2018;9:2086. DOI
15. Krokos E, Varshney A. Quantifying VR cybersickness using EEG. Virtual Reality 2022;26:77-89. DOI
16. Suhaimi NS, Mountstephens J, Teo J. A dataset for emotion recognition using virtual reality and EEG (DER-VREEG): emotional state
classification using low-cost wearable VR-EEG headsets. Big Data Cogn Comput 2022;6:16. DOI
17. Zhang Y, Zhang L, Hua H, et al. Relaxation degree analysis using frontal electroencephalogram under virtual reality relaxation scenes.
Front Neurosci 2021;15:719869. DOI PubMed PMC
18. Kuang F, Shu L, Hua H, et al. Cross-subject and cross-device wearable EEG emotion recognition using frontal EEG under virtual
reality scenes. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM); Houston, TX, USA; 2021. p. 3630-7.
DOI
19. Li G, Wu J, Xia Y, He Q, Jin H. Review of semi-dry electrodes for EEG recording. J Neural Eng 2020;17:051004. DOI PubMed
20. Goulart LA, Guaraldo TT, Lanza MRV. A novel electrochemical sensor based on printex L6 carbon black carrying CuO/Cu O
2
nanoparticles for propylparaben determination. Electroanalysis 2018;30:2967-76. DOI
21. Luo J, Sun C, Chang B, et al. MXene-enabled self-adaptive hydrogel interface for active electroencephalogram interactions. ACS Nano
2022;16:19373-84. DOI
22. Wang C, Wang H, Wang B, et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci Adv
2022;8:eabo1396. DOI PubMed PMC
23. Wang R, Jiang X, Wang W, Li Z. A microneedle electrode array on flexible substrate for long-term EEG monitoring. Sens Actuators B
Chem 2017;244:750-8. DOI
24. Song Y, Li P, Li M, et al. Fabrication of chitosan/Au-TiO nanotube-based dry electrodes for electroencephalography recording. Mater
2
Sci Eng C Mater Biol Appl 2017;79:740-7. DOI PubMed
25. Aghazadeh H, Yazdi MK, Kolahi A, et al. Synthesis, characterization and performance enhancement of dry polyaniline-coated
neuroelectrodes for electroencephalography measurement. Curr Appl Phys 2021;27:43-50. DOI
26. Liu J, Liu X, He E, et al. A novel dry-contact electrode for measuring electroencephalography signals. Sens Actuator A Phys
2019;294:73-80. DOI
27. Arai M, Kudo Y, Miki N. Polymer-based candle-shaped microneedle electrodes for electroencephalography on hairy skin. Jpn J Appl
Phys 2016;55:06GP16. DOI
28. Zhang L, Kumar KS, He H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal
biopotential monitoring. Nat Commun 2020;11:4683. DOI PubMed PMC
29. Lin S, Liu J, Li W, et al. A flexible, robust, and gel-free electroencephalogram electrode for noninvasive brain-computer interfaces.
Nano Lett 2019;19:6853-61. DOI
30. Baek HJ, Lee HJ, Lim YG, Park KS. Conductive polymer foam surface improves the performance of a capacitive EEG electrode.
IEEE Trans Biomed Eng 2012;59:3422-31. DOI PubMed
31. Shu L, Xu T, Xu X. Multilayer sweat-absorbable textile electrode for EEG measurement in forehead site. IEEE Sensors J
2019;19:5995-6005. DOI
32. Liu J, Lin S, Li W, et al. Ten-hour stable noninvasive brain-computer interface realized by semidry hydrogel-based electrodes.
Research 2022;2022:9830457. DOI PubMed PMC
33. Kayser LV, Lipomi DJ. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv Mater
2019;31:1806133. DOI PubMed PMC
34. Ding Y, Yang J, Tolle CR, Zhu Z. Flexible and compressible PEDOT:PSS@melamine conductive sponge prepared via one-step dip
coating as piezoresistive pressure sensor for human motion detection. ACS Appl Mater Interfaces 2018;10:16077-86. DOI
35. Cui XT, Zhou DD. Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation. IEEE Trans Neural Syst Rehabil Eng
2007;15:502-8. DOI PubMed
36. Zucca A, Cipriani C, Sudha, et al. Tattoo conductive polymer nanosheets for skin-contact applications. Adv Healthc Mater 2015;4:983-
90. DOI
37. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component

