Page 58 - Read Online
P. 58
Page 10 of 11 Feriozzi et al. Rare Dis Orphan Drugs J 2024;3:11 https://dx.doi.org/10.20517/rdodj.2023.37
21. Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. The unfolded protein response in immunity and inflammation. Nat Rev Immunol
2016;16:469-84. DOI PubMed PMC
22. Zhang K, Shen X, Wu J, et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory
response. Cell 2006;124:587-99. DOI
23. Meares GP, Liu Y, Rajbhandari R, et al. PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-
induced inflammation. Mol Cell Biol 2014;34:3911-25. DOI PubMed PMC
24. Consolato F, De Fusco M, Schaeffer C, et al. α-Gal A missense variants associated with Fabry disease can lead to ER stress and
induction of the unfolded protein response. Mol Genet Metab Rep 2022;33:100926. DOI PubMed PMC
25. Janssens S, Pulendran B, Lambrecht BN. Emerging functions of the unfolded protein response in immunity. Nat Immunol
2014;15:910-9. DOI PubMed PMC
26. Braunstein H, Papazian M, Maor G, Lukas J, Rolfs A, Horowitz M. Misfolding of lysosomal α-galactosidase a in a fly model and its
alleviation by the pharmacological chaperone migalastat. Int J Mol Sci 2020;21:7397. DOI PubMed PMC
27. Nikolaenko V, Warnock DG, Mills K, Heywood WE. Elucidating the toxic effect and disease mechanisms associated with Lyso-Gb3
in Fabry disease. Hum Mol Genet 2023;32:2464-72. DOI PubMed PMC
28. Fogo AB, Bostad L, Svarstad E, et al. Scoring system for renal pathology in Fabry disease: report of the International Study Group of
Fabry Nephropathy (ISGFN). Nephrol Dial Transplant 2010;25:2168-77. DOI PubMed PMC
29. Sanchez-Niño MD, Sanz AB, Carrasco S, et al. Globotriaosylsphingosine actions on human glomerular podocytes: implications for
Fabry nephropathy. Nephrol Dial Transplant 2011;26:1797-802. DOI
30. Sanchez-Niño MD, Carpio D, Sanz AB, Ruiz-Ortega M, Mezzano S, Ortiz A. Lyso-Gb3 activates Notch1 in human podocytes. Hum
Mol Genet 2015;24:5720-32. DOI PubMed
31. Vujkovac B, Srebotnik Kirbiš I, Keber T, Cokan Vujkovac A, Tretjak M, Radoš Krnel S. Podocyturia in Fabry disease: a 10-year
follow-up. Clin Kidney J 2022;15:269-77. DOI PubMed PMC
32. Feriozzi S, Rozenfeld P. Pathology and pathogenic pathways in Fabry nephropathy. Clin Exp Nephrol 2021;25:925-34. DOI PubMed
33. Anders HJ, Banas B, Schlöndorff D. Signaling danger: toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol
2004;15:854-67. DOI PubMed
34. Matafora V, Cuccurullo M, Beneduci A, et al. Early markers of Fabry disease revealed by proteomics. Mol Biosyst 2015;11:1543-51.
DOI
35. Doykov ID, Heywood WE, Nikolaenko V, et al. Rapid, proteomic urine assay for monitoring progressive organ disease in Fabry
disease. J Med Genet 2020;57:38-47. DOI
36. Biancini GB, Jacques CE, Hammerschmidt T, et al. Biomolecules damage and redox status abnormalities in Fabry patients before and
during enzyme replacement therapy. Clin Chim Acta 2016;461:41-6. DOI
37. Shu L, Vivekanandan-Giri A, Pennathur S, et al. Establishing 3-nitrotyrosine as a biomarker for the vasculopathy of Fabry disease.
Kidney Int 2014;86:58-66. DOI PubMed PMC
38. Aerts JM, Groener JE, Kuiper S, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci USA
2008;105:2812-7. DOI PubMed PMC
39. Do HS, Park SW, Im I, et al. Enhanced thrombospondin-1 causes dysfunction of vascular endothelial cells derived from Fabry disease-
induced pluripotent stem cells. EBioMedicine 2020;52:102633. DOI PubMed PMC
40. Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol 2010;21:1819-34. DOI PubMed
41. Alroy J, Sabnis S, Kopp JB. Renal pathology in Fabry disease. J Am Soc Nephrol 2002;13:S134-8. DOI PubMed
42. Gai Z, Gui T, Kullak-Ublick GA, Li Y, Visentin M. The role of mitochondria in drug-induced kidney injury. Front Physiol
2020;11:1079. DOI PubMed PMC
43. Jeon YJ, Jung N, Park JW, Park HY, Jung SC. Epithelial-mesenchymal transition in kidney tubular epithelial cells induced by
globotriaosylsphingosine and globotriaosylceramide. PLoS One 2015;10:e0136442. DOI PubMed PMC
44. Taguchi A, Maruyama H, Nameta M, et al. A symptomatic Fabry disease mouse model generated by inducing globotriaosylceramide
synthesis. Biochem J 2013;456:373-83. DOI PubMed PMC
45. Taguchi A, Ishii S, Mikame M, Maruyama H. Distinctive accumulation of globotriaosylceramide and globotriaosylsphingosine in a
mouse model of classic Fabry disease. Mol Genet Metab Rep 2023;34:100952. DOI PubMed PMC
46. Turkmen K, Karaselek MA, Celik SC, et al. Could immune cells be associated with nephropathy in Fabry disease patients? Int Urol
Nephrol 2023;55:1575-88. DOI
47. Hughes D, Linhart A, Gurevich A, Kalampoki V, Jazukeviciene D, Feriozzi S; FOS Study Group. Prompt agalsidase alfa therapy
initiation is associated with improved renal and cardiovascular outcomes in a fabry outcome survey analysis. Drug Des Devel Ther
2021;15:3561-72. DOI PubMed PMC
48. Khan A, Sirrs SM, Bichet DG, et al; Canadian Fabry Disease Initiative. The Safety of agalsidase alfa enzyme replacement therapy in
canadian patients with Fabry disease following implementation of a bioreactor process. Drugs R D 2021;21:385-97. DOI PubMed
PMC
49. Battaglia Y, Bulighin F, Zerbinati L, Vitturi N, Marchi G, Carraro G. Dapaglifozin on albuminuria in chronic kidney disease
patients with Fabry disease: the DEFY study design and protocol. J Clin Med 2023;12:3689. DOI PubMed PMC
50. Braun F, Blomberg L, Brodesser S, et al. Enzyme replacement therapy clears Gb3 deposits from a podocyte cell culture model of fabry
disease but fails to restore altered cellular signaling. Cell Physiol Biochem 2019;52:1139-50. DOI