Page 55 - Read Online
P. 55

Page 10 of 11           Feriozzi et al. Rare Dis Orphan Drugs J 2024;3:11  https://dx.doi.org/10.20517/rdodj.2023.37

               21.      Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. The unfolded protein response in immunity and inflammation. Nat Rev Immunol
                   2016;16:469-84.  DOI  PubMed  PMC
               22.      Zhang K, Shen X, Wu J, et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory
                   response. Cell 2006;124:587-99.  DOI
               23.      Meares GP, Liu Y, Rajbhandari R, et al. PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-
                   induced inflammation. Mol Cell Biol 2014;34:3911-25.  DOI  PubMed  PMC
               24.      Consolato F, De Fusco M, Schaeffer C, et al. α-Gal A missense variants associated with Fabry disease can lead to ER stress and
                   induction of the unfolded protein response. Mol Genet Metab Rep 2022;33:100926.  DOI  PubMed  PMC
               25.      Janssens S, Pulendran B, Lambrecht BN. Emerging functions of the unfolded protein response in immunity. Nat Immunol
                   2014;15:910-9.  DOI  PubMed  PMC
               26.      Braunstein H, Papazian M, Maor G, Lukas J, Rolfs A, Horowitz M. Misfolding of lysosomal α-galactosidase a in a fly model and its
                   alleviation by the pharmacological chaperone migalastat. Int J Mol Sci 2020;21:7397.  DOI  PubMed  PMC
               27.      Nikolaenko V, Warnock DG, Mills K, Heywood WE. Elucidating the toxic effect and disease mechanisms associated with Lyso-Gb3
                   in Fabry disease. Hum Mol Genet 2023;32:2464-72.  DOI  PubMed  PMC
               28.      Fogo AB, Bostad L, Svarstad E, et al. Scoring system for renal pathology in Fabry disease: report of the International Study Group of
                   Fabry Nephropathy (ISGFN). Nephrol Dial Transplant 2010;25:2168-77.  DOI  PubMed  PMC
               29.      Sanchez-Niño MD, Sanz AB, Carrasco S, et al. Globotriaosylsphingosine actions on human glomerular podocytes: implications for
                   Fabry nephropathy. Nephrol Dial Transplant 2011;26:1797-802.  DOI
               30.      Sanchez-Niño MD, Carpio D, Sanz AB, Ruiz-Ortega M, Mezzano S, Ortiz A. Lyso-Gb3 activates Notch1 in human podocytes. Hum
                   Mol Genet 2015;24:5720-32.  DOI  PubMed
               31.      Vujkovac B, Srebotnik Kirbiš I, Keber T, Cokan Vujkovac A, Tretjak M, Radoš Krnel S. Podocyturia in Fabry disease: a 10-year
                   follow-up. Clin Kidney J 2022;15:269-77.  DOI  PubMed  PMC
               32.      Feriozzi S, Rozenfeld P. Pathology and pathogenic pathways in Fabry nephropathy. Clin Exp Nephrol 2021;25:925-34.  DOI  PubMed
               33.      Anders HJ, Banas B, Schlöndorff D. Signaling danger: toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol
                   2004;15:854-67.  DOI  PubMed
               34.      Matafora V, Cuccurullo M, Beneduci A, et al. Early markers of Fabry disease revealed by proteomics. Mol Biosyst 2015;11:1543-51.
                   DOI
               35.      Doykov ID, Heywood WE, Nikolaenko V, et al. Rapid, proteomic urine assay for monitoring progressive organ disease in Fabry
                   disease. J Med Genet 2020;57:38-47.  DOI
               36.      Biancini GB, Jacques CE, Hammerschmidt T, et al. Biomolecules damage and redox status abnormalities in Fabry patients before and
                   during enzyme replacement therapy. Clin Chim Acta 2016;461:41-6.  DOI
               37.      Shu L, Vivekanandan-Giri A, Pennathur S, et al. Establishing 3-nitrotyrosine as a biomarker for the vasculopathy of Fabry disease.
                   Kidney Int 2014;86:58-66.  DOI  PubMed  PMC
               38.      Aerts JM, Groener JE, Kuiper S, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci USA
                   2008;105:2812-7.  DOI  PubMed  PMC
               39.      Do HS, Park SW, Im I, et al. Enhanced thrombospondin-1 causes dysfunction of vascular endothelial cells derived from Fabry disease-
                   induced pluripotent stem cells. EBioMedicine 2020;52:102633.  DOI  PubMed  PMC
               40.      Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol 2010;21:1819-34.  DOI  PubMed
               41.      Alroy J, Sabnis S, Kopp JB. Renal pathology in Fabry disease. J Am Soc Nephrol 2002;13:S134-8.  DOI  PubMed
               42.      Gai Z, Gui T, Kullak-Ublick GA, Li Y, Visentin M. The role of mitochondria in drug-induced kidney injury. Front Physiol
                   2020;11:1079.  DOI  PubMed  PMC
               43.      Jeon YJ, Jung N, Park JW, Park HY, Jung SC. Epithelial-mesenchymal transition in kidney tubular epithelial cells induced by
                   globotriaosylsphingosine and globotriaosylceramide. PLoS One 2015;10:e0136442.  DOI  PubMed  PMC
               44.      Taguchi A, Maruyama H, Nameta M, et al. A symptomatic Fabry disease mouse model generated by inducing globotriaosylceramide
                   synthesis. Biochem J 2013;456:373-83.  DOI  PubMed  PMC
               45.      Taguchi A, Ishii S, Mikame M, Maruyama H. Distinctive accumulation of globotriaosylceramide and globotriaosylsphingosine in a
                   mouse model of classic Fabry disease. Mol Genet Metab Rep 2023;34:100952.  DOI  PubMed  PMC
               46.      Turkmen K, Karaselek MA, Celik SC, et al. Could immune cells be associated with nephropathy in Fabry disease patients? Int Urol
                   Nephrol 2023;55:1575-88.  DOI
               47.      Hughes D, Linhart A, Gurevich A, Kalampoki V, Jazukeviciene D, Feriozzi S; FOS Study Group. Prompt agalsidase alfa therapy
                   initiation is associated with improved renal and cardiovascular outcomes in a fabry outcome survey analysis. Drug Des Devel Ther
                   2021;15:3561-72.  DOI  PubMed  PMC
               48.      Khan A, Sirrs SM, Bichet DG, et al; Canadian Fabry Disease Initiative. The Safety of agalsidase alfa enzyme replacement therapy in
                   canadian patients with Fabry disease following implementation of a bioreactor process. Drugs R D 2021;21:385-97.  DOI  PubMed
                   PMC
               49.      Battaglia Y, Bulighin F, Zerbinati L, Vitturi N, Marchi G, Carraro G. Dapaglifozin on albuminuria in chronic kidney disease
                   patients with Fabry disease: the DEFY study design and protocol. J Clin Med 2023;12:3689.  DOI  PubMed  PMC
               50.      Braun F, Blomberg L, Brodesser S, et al. Enzyme replacement therapy clears Gb3 deposits from a podocyte cell culture model of fabry
                   disease but fails to restore altered cellular signaling. Cell Physiol Biochem 2019;52:1139-50.  DOI
   50   51   52   53   54   55   56   57   58   59   60