Page 354 - Read Online
P. 354
In conclusion, this study demonstrates that repair of Quantification of growth factors in allogenic bone grafts extracted with
bone defect in a rabbit model can be achieved through three different methods. Cell Tissue Bank 2007;8:107‑14.
bone grafting using BM‑MSCs implanted on a xenogeneic 15. Chen L, Zhu WM, Fei ZQ, Chen JL, Xiong JY, Zhang JF, Duan L, Huang J,
Liu Z, Wang D, Zeng Y. The study on biocompatibility of porous nHA/PLGA
demineralized cancellous bone scaffold. NB formation was composite scaffolds for tissue engineering with rabbit chondrocytes in vitro.
optimized with the preservation of the periosteum at the Biomed Res Int 2013;2013:412745.
site of injury. The combination of biocompatible material, 16. Kon E, Filardo G, Roffi A, Di Martino A, Hamdan M, De Pasqual L,
the ability for self‑renewal and differentiation of MSCs Merli ML, Marcacci M. Bone regeneration with mesenchymal stem cells.
Clin Cases Miner Bone Metab 2012;9:24‑7.
with the augmenting effects of periosteum may prove 17. Pang L, Hao W, Jiang M, Huang J, Yan Y, Hu Y. Bony defect repair
to be an extremely promising approach in the fields of in rabbit using hybrid rapid prototyping polylactic‑co‑glycolic acid/
orthopedic and plastic surgery. beta‑tricalciumphosphate collagen I/apatite scaffold and bone marrow
mesenchymal stem cells. Indian J Orthop 2013;47:388‑94.
Acknowledgment 18. Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S. Role of mesenchymal
I acknowledge my colleagues at the Department of Hematology, stem cells in bone regeneration and fracture repair: a review. Int Orthop
Hue Central Hospital. I would also like to specially thank Dr. 2013;37:2491‑8.
Bui Duc Phu, Dr. Nguyen Duy Thang, Dr. Phan Thi Thuy Hoa, 19. Annibali S, Cicconetti A, Cristalli MP, Giordano G, Trisi P, Pilloni A,
Ottolenghi L. A comparative morphometric analysis of biodegradable
Dr. Phan Hoang Duy, Dr. Dang Cong Thuan and Dr. Fréderic scaffolds as carriers for dental pulp and periosteal stem cells in a model of
Schuind, for their excellent help and support. bone regeneration. J Craniofac Surg 2013;24:866‑71.
20. Chatterjea A, Renard AJ, Jolink C, van Blitterswijk CA, De Boer J. Streamlining
Financial support and sponsorship the generation of an osteogenic graft by 3D culture of unprocessed bone
Nil. marrow on ceramic scaffolds. J Tissue Eng Regen Med 2012;6:103‑12.
21. Johnson EO, Troupis T, Soucacos PN. Tissue‑engineered vascularized bone
Conflicts of interest grafts: basic science and clinical relevance to trauma and reconstructive
There are no conflicts of interest. microsurgery. Microsurgery 2011;31:176‑82.
22. Zhang W, Zhang F, Shi H, Tan R, Han S, Ye G, Pan S, Sun F, Liu X.
Comparisons of rabbit bone marrow mesenchymal stem cell isolation and
REFERENCES culture methods in vitro. PLoS One 2014;9:e88794.
23. Hosseinkhani M, Mehrabani D, Karimfar MH, Bakhtiyari S, Manafi A, Shirazi R.
1. Bigham‑Sadegh A, Shadkhast M, Khalegi MR. Demineralized calf foetal Tissue engineered scaffolds in regenerative medicine. World J Plast Surg
growth plate effects on experimental bone healing in rabbit model. Vet Arh 2014;3:3‑7.
2013;83:525‑36. 24. Li M, Ikehara S. Bone‑marrow‑derived mesenchymal stem cells for organ
2. Ng MH, Duski S, Idrus RB Tan KK, Yusof MR, Low KC, Rose IM, Mohamed Z, repair. Stem Cells Int 2013;2013:132642.
Bin Saim A. Repair of segmental load‑bearing bone defect by autologous 25. Ohgushi H. Osteogenically differentiated mesenchymal stem cells and
mesenchymal stem cells and plasma‑derived fibrin impregnated ceramic block ceramics for bone tissue engineering. Expert Opin Biol Ther 2014;14:197‑208.
results in early recovery of limb function. Biomed Res Int 2014;2014:345910. 26. Wang B, Sun C, Shao Z, Yang S, Che B, Wu Q, Liu J. Designer self‑assembling
3. Fialkov JA, Holy CE, Shoichet MS, Davies JE. In vivo bone engineering in a Peptide nanofiber scaffolds containing link protein N‑terminal peptide
rabbit femur. J Craniofac Surg 2003;14:324‑32. induce chondrogenesis of rabbit bone marrow stem cells. Biomed Res Int
4. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of 2014;2014:421954.
bone: the reconstructive surgeon’s point of view. J Cell Mol Med 2006;10:7‑19. 27. Nakamura O, Kaji Y, Imaizumi Y, Yamagami Y, Yamamoto T. Prefabrication
5. Cao L, Liu X, Liu S, Jiang Y, Zhang X, Zhang C, Zeng B. Experimental repair of vascularized bone allograft in a recipient rat using a flow‑through
of segmental bone defects in rabbits by angiopoietin‑1 gene transfected vascular pedicle, bone morphogenetic protein, and bisphosphonate.
MSCs seeded on porous β‑TCP scaffolds. J Biomed Mater Res B Appl Biomater J Reconstr Microsurg 2013;29:241‑8.
2012;100:1229‑36. 28. Rust PA, Kalsi P, Briggs TW, Cannon SR, Blunn GW. Will mesenchymal
6. Lê Thua TH, Pham DN, Boeckx W, De Mey A. Vascularized fibular transfer stem cells differentiate into osteoblasts on allograft? Clin Orthop Relat Res
in longstanding and infected large bone defects. Acta Orthop Belg 2014;80:50‑5. 2007;457:220‑6.
7. Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis: the potential for 29. Colnot C, Zhang X, Knothe Tate ML. Current insights on the regenerative
engineering bone. Eur Cell Mater 2008;15:100‑14. potential of the periosteum: molecular, cellular, and endogenous engineering
8. Patel DM, Shah J, Srivastava AS. Therapeutic potential of mesenchymal stem approaches. J Orthop Res 2012;30:1869‑78.
cells in regenerative medicine. Stem Cells Int 2013;2013:496218. 30. Lin Z, Fateh A, Salem DM, Intini G. Periosteum: biology and applications in
9. Ai J, Ebrahimi S, Khoshzaban A, Jafarzadeh Kashi TS, Mehrabani D. Tissue craniofacial bone regeneration. J Dent Res 2014;93:109‑16.
engineering using human mineralized bone xenograft and bone marrow 31. Ferretti C, Mattioli‑Belmonte M. Periosteum derived stem cells
mesenchymal stem cells allograft in healing of tibial fracture of experimental for regenerative medicine proposals: boosting current knowledge.
rabbit model. Iran Red Crescent Med J 2012;14:96‑103. World J Stem Cells 2014;6:266‑77.
10. Zomorodian E, Baghaban Eslaminejad M. Mesenchymal stem cells as a potent 32. Evans SF, Chang H, Knothe Tate ML. Elucidating multiscale periosteal
cell source for bone regeneration. Stem Cells Int 2012;2012:980353. mechanobiology: a key to unlocking the smart properties and regenerative
11. Zhang X, Qi YY, Zhao TF, Li D, Dai XS, Niu L, He RX. Reconstruction of capacity of the periosteum? Tissue Eng Part B Rev 2013;19:147‑59.
segmental bone defects in the rabbit ulna using periosteum encapsulated 33. Zhang X, Awad HA, O’Keefe RJ, Guldberg RE, Schwarz EM. A perspective:
mesenchymal stem cells‑loaded poly (lactic‑co‑glycolic acid) scaffolds. engineering periosteum for structural bone graft healing. Clin Orthop Relat Res
Chin Med J (Engl) 2012;125:4031‑6. 2008;466:1777‑87.
12. Nooeaid P, Salih V, Beier JP, Boccaccini AR. Osteochondral tissue engineering: 34. Agata H, Asahina I, Yamazaki Y, Uchida M, Shinohara Y, Honda MJ, Kagami H,
scaffolds, stem cells and applications. J Cell Mol Med 2012;16:2247‑70. Ueda M. Effective bone engineering with periosteum‑derived cells. J Dent Res
13. Zhao M, Zhou J, Fang T, Dai W, Yin W, Dong J. Repair of bone defect with 2007;86:79‑83.
vascularized tissue engineered bone graft seeded with mesenchymal stem 35. Chang H, Knothe Tate ML. Concise review: the periosteum: tapping
cells in rabbits. Microsurgery 2011;31:130‑7. into a reservoir of clinically useful progenitor cells. Stem Cells Transl Med
14. Wildemann B, Kadow‑Romacker A, Pruss A, Haas NP, Schmidmaier G. 2012;1:480‑91.
Plast Aesthet Res || Vol 2 || Issue 6 || Nov 12, 2015 345