Page 354 - Read Online
P. 354

In conclusion, this study demonstrates that repair of   Quantification of growth factors in allogenic bone grafts extracted with
          bone defect in a rabbit model can be achieved through   three different methods. Cell Tissue Bank 2007;8:107‑14.
          bone grafting using BM‑MSCs implanted on a xenogeneic   15.  Chen L, Zhu WM, Fei ZQ, Chen JL, Xiong JY, Zhang JF, Duan L, Huang J,
                                                                  Liu Z, Wang D, Zeng Y. The study on biocompatibility of porous nHA/PLGA
          demineralized cancellous bone scaffold. NB formation was   composite scaffolds for tissue engineering with rabbit chondrocytes in vitro.
          optimized with the preservation of the periosteum at the   Biomed Res Int 2013;2013:412745.
          site of injury. The combination of biocompatible material,   16.  Kon  E, Filardo  G, Roffi  A, Di Martino  A, Hamdan  M, De Pasqual  L,
          the  ability  for self‑renewal and differentiation  of MSCs   Merli ML, Marcacci M. Bone regeneration with mesenchymal stem cells.
                                                                  Clin Cases Miner Bone Metab 2012;9:24‑7.
          with the augmenting effects of periosteum may prove   17.  Pang  L, Hao  W, Jiang  M, Huang  J, Yan  Y, Hu  Y. Bony defect repair
          to be an extremely promising approach  in the fields of   in  rabbit  using  hybrid  rapid  prototyping  polylactic‑co‑glycolic  acid/
          orthopedic and plastic surgery.                         beta‑tricalciumphosphate  collagen  I/apatite  scaffold  and  bone  marrow
                                                                  mesenchymal stem cells. Indian J Orthop 2013;47:388‑94.
          Acknowledgment                                      18.  Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S. Role of mesenchymal
          I acknowledge my colleagues at the Department of Hematology,   stem cells in bone regeneration and fracture repair: a review. Int Orthop
          Hue Central Hospital. I would also like to specially thank  Dr.   2013;37:2491‑8.
          Bui Duc Phu, Dr. Nguyen Duy Thang, Dr. Phan Thi Thuy Hoa,   19.  Annibali  S,  Cicconetti  A,  Cristalli  MP,  Giordano  G,  Trisi  P,  Pilloni  A,
                                                                  Ottolenghi  L.  A  comparative  morphometric  analysis  of  biodegradable
          Dr. Phan Hoang Duy, Dr. Dang Cong Thuan and Dr. Fréderic   scaffolds as carriers for dental pulp and periosteal stem cells in a model of
          Schuind, for their excellent help and support.          bone regeneration. J Craniofac Surg 2013;24:866‑71.
                                                              20.  Chatterjea A, Renard AJ, Jolink C, van Blitterswijk CA, De Boer J. Streamlining
          Financial support and sponsorship                       the generation of an osteogenic graft by 3D culture of unprocessed bone
          Nil.                                                    marrow on ceramic scaffolds.  J Tissue Eng Regen Med 2012;6:103‑12.
                                                              21.  Johnson EO, Troupis T, Soucacos PN. Tissue‑engineered vascularized bone
          Conflicts of interest                                   grafts: basic science and clinical relevance to trauma and reconstructive
          There are no conflicts of interest.                     microsurgery. Microsurgery 2011;31:176‑82.
                                                              22.  Zhang  W,  Zhang  F,  Shi  H,  Tan  R,  Han  S,  Ye  G,  Pan  S,  Sun  F,  Liu  X.
                                                                  Comparisons of rabbit bone marrow mesenchymal stem cell isolation and
          REFERENCES                                              culture methods in vitro. PLoS One 2014;9:e88794.
                                                              23.  Hosseinkhani M, Mehrabani D, Karimfar MH, Bakhtiyari S, Manafi A, Shirazi R.
          1.   Bigham‑Sadegh  A, Shadkhast  M, Khalegi  MR. Demineralized calf foetal   Tissue engineered scaffolds in regenerative medicine. World J Plast Surg
             growth plate effects on experimental bone healing in rabbit model. Vet Arh   2014;3:3‑7.
             2013;83:525‑36.                                  24.  Li M, Ikehara S. Bone‑marrow‑derived mesenchymal stem cells for organ
          2.   Ng MH, Duski S, Idrus RB Tan KK, Yusof MR, Low KC, Rose IM, Mohamed Z,   repair. Stem Cells Int 2013;2013:132642.
             Bin Saim A. Repair of segmental load‑bearing bone defect by autologous   25.  Ohgushi  H. Osteogenically differentiated mesenchymal stem cells and
             mesenchymal stem cells and plasma‑derived fibrin impregnated ceramic block   ceramics for bone tissue engineering. Expert Opin Biol Ther 2014;14:197‑208.
             results in early recovery of limb function. Biomed Res Int 2014;2014:345910.  26.  Wang B, Sun C, Shao Z, Yang S, Che B, Wu Q, Liu J. Designer self‑assembling
          3.   Fialkov JA, Holy CE, Shoichet MS, Davies JE. In vivo bone engineering in a   Peptide  nanofiber  scaffolds  containing  link  protein  N‑terminal  peptide
             rabbit femur.  J Craniofac Surg 2003;14:324‑32.      induce chondrogenesis of rabbit bone marrow stem cells. Biomed Res Int
          4.   Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of   2014;2014:421954.
             bone: the reconstructive surgeon’s point of view.  J Cell Mol Med 2006;10:7‑19.  27.  Nakamura O, Kaji Y, Imaizumi Y, Yamagami Y, Yamamoto T. Prefabrication
          5.   Cao L, Liu X, Liu S, Jiang Y, Zhang X, Zhang C, Zeng B. Experimental repair   of  vascularized  bone  allograft  in  a  recipient  rat  using  a  flow‑through
             of segmental bone defects in rabbits by angiopoietin‑1 gene transfected   vascular pedicle, bone morphogenetic protein, and bisphosphonate.
             MSCs seeded on porous β‑TCP scaffolds.  J Biomed Mater Res B Appl Biomater   J Reconstr Microsurg 2013;29:241‑8.
             2012;100:1229‑36.                                28.  Rust PA, Kalsi P, Briggs TW, Cannon SR, Blunn GW. Will mesenchymal
          6.   Lê Thua TH, Pham DN, Boeckx W, De Mey A. Vascularized fibular transfer   stem cells differentiate into osteoblasts on allograft? Clin Orthop Relat Res
             in longstanding and infected large bone defects. Acta Orthop Belg 2014;80:50‑5.  2007;457:220‑6.
          7.   Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis: the potential for   29.  Colnot C, Zhang X, Knothe Tate ML. Current insights on the regenerative
             engineering bone. Eur Cell Mater 2008;15:100‑14.     potential of the periosteum: molecular, cellular, and endogenous engineering
          8.   Patel DM, Shah J, Srivastava AS. Therapeutic potential of mesenchymal stem   approaches.  J Orthop Res 2012;30:1869‑78.
             cells in regenerative medicine. Stem Cells Int 2013;2013:496218.  30.  Lin Z, Fateh A, Salem DM, Intini G. Periosteum: biology and applications in
          9.   Ai J, Ebrahimi S, Khoshzaban A, Jafarzadeh Kashi TS, Mehrabani D. Tissue   craniofacial bone regeneration.  J Dent Res 2014;93:109‑16.
             engineering using human mineralized bone xenograft and bone marrow   31.  Ferretti  C, Mattioli‑Belmonte  M. Periosteum derived stem cells
             mesenchymal stem cells allograft in healing of tibial fracture of experimental   for  regenerative  medicine  proposals:  boosting  current  knowledge.
             rabbit model. Iran Red Crescent Med J 2012;14:96‑103.  World J Stem Cells 2014;6:266‑77.
          10.  Zomorodian E, Baghaban Eslaminejad M. Mesenchymal stem cells as a potent   32.  Evans  SF, Chang  H, Knothe Tate  ML. Elucidating multiscale periosteal
             cell source for bone regeneration. Stem Cells Int 2012;2012:980353.  mechanobiology: a key to unlocking the smart properties and regenerative
          11.  Zhang X, Qi YY, Zhao TF, Li D, Dai XS, Niu L, He RX. Reconstruction of   capacity of the periosteum? Tissue Eng Part B Rev 2013;19:147‑59.
             segmental bone defects in the rabbit ulna using periosteum encapsulated   33.  Zhang X, Awad HA, O’Keefe RJ, Guldberg RE, Schwarz EM. A perspective:
             mesenchymal stem cells‑loaded poly  (lactic‑co‑glycolic acid) scaffolds.   engineering periosteum for structural bone graft healing. Clin Orthop Relat Res
             Chin Med J (Engl) 2012;125:4031‑6.                   2008;466:1777‑87.
          12.  Nooeaid P, Salih V, Beier JP, Boccaccini AR. Osteochondral tissue engineering:   34.  Agata H, Asahina I, Yamazaki Y, Uchida M, Shinohara Y, Honda MJ, Kagami H,
             scaffolds, stem cells and applications.  J Cell Mol Med 2012;16:2247‑70.  Ueda M. Effective bone engineering with periosteum‑derived cells.  J Dent Res
          13.  Zhao M, Zhou J, Fang T, Dai W, Yin W, Dong J. Repair of bone defect with   2007;86:79‑83.
             vascularized tissue engineered bone graft seeded with mesenchymal stem   35.  Chang  H, Knothe Tate  ML. Concise review: the periosteum: tapping
             cells in rabbits. Microsurgery 2011;31:130‑7.        into a reservoir of clinically useful progenitor cells. Stem Cells Transl Med
          14.  Wildemann B, Kadow‑Romacker A, Pruss A, Haas NP, Schmidmaier G.   2012;1:480‑91.









          Plast Aesthet Res || Vol 2 || Issue 6 || Nov 12, 2015                                             345
   349   350   351   352   353   354   355   356   357   358   359