Page 66 - Read Online
P. 66

Page 62            Al-Sammarraie et al. Neuroimmunol Neuroinflammation 2021;8:53-63  I  http://dx.doi.org/10.20517/2347-8659.2020.34

               16.  Enzmann GU, Benton RL, Woock JP, Howard RM, Tsoulfas P, et al. Consequences of noggin expression by neural stem, glial, and
                   neuronal precursor cells engrafted into the injured spinal cord. Exp Neurol 2005;195:293-304.
               17.  Horbelt D, Denkis A, Knaus P. A portrait of transforming growth factor β superfamily signalling: background matters. Int J Biochem Cell
                   Biol 2012;44:469-74.
               18.  Heldin CH, Moustakas A. Role of Smads in TGFβ signaling. Cell Tissue Res 2012;347:21-36.
               19.  Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, et al. Smad6 inhibits signalling by the TGF-β superfamily. Nature 1997;389:622-6.
               20.  Hanyu A, Ishidou Y, Ebisawa T, Shimanuki T, Imamura T, et al. The N domain of Smad7 is essential for specific inhibition of
                   transforming growth factor-beta signaling. J Cell Biol 2001;155:1017-27.
               21.  Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4
                   tumor suppressor. Genes Dev 1998;12:186-97.
               22.  Zimmerman LB, De Jesús-Escobar JM, Harland RM. The Spemann organizer signal noggin binds and inactivates bone morphogenetic
                   protein 4. Cell 1996;86:599-606.
               23.  Matsuura I, Taniguchi J, Hata K, Saeki N, Yamashita T. BMP inhibition enhances axonal growth and functional recovery after spinal cord
                   injury. J Neurochem 2008;105:1471-9.
               24.  de Rivero Vaccari JP, Marcillo A, Nonner D, Dietrich WD, Keane RW. Neuroprotective effects of bone morphogenetic protein 7 (BMP7)
                   treatment after spinal cord injury. Neurosci Lett 2009;465:226-9.
               25.  Song P, Xia X, Han T, Fang H, Wang Y, et al. BMSCs promote the differentiation of NSCs into oligodendrocytes via mediating Id2 and
                   Olig expression through BMP/Smad signaling pathway. Biosci Rep 2018;38:BSR20180303.
               26.  Sahni V, Mukhopadhyay A, Tysseling V, Hebert A, Birch D, et al. BMPR1a and BMPR1b signaling exert opposing effects on gliosis after
                   spinal cord injury. J Neurosci 2010;30:1839-55.
               27.  Setoguchi T, Yone K, Matsuoka E, Takenouchi H, Nakashima K, et al. Traumatic injury-induced BMP7 expression in the adult rat spinal
                   cord. Brain Res 2001;921:219-25.
               28.  Chen J, Leong SY, Schachner M. Differential expression of cell fate determinants in neurons and glial cells of adult mouse spinal cord
                   after compression injury. Eur J Neurosci 2005;22:1895-906.
               29.  Cui ZS, Zhao P, Jia CX, Liu HJ, Qi R, et al. Local expression and role of BMP-2/4 in injured spinal cord. Genet Mol Res 2015;14:9109-
                   17.
               30.  Kim JH, Lee YW, Park YM, Park KA, Park SH, et al. Agmatine-reduced collagen scar area accompanied with surface righting reflex
                   recovery after complete transection spinal cord injury. Spine (Phila Pa 1976) 2011;36:2130-8.
               31.  Park YM, Lee WT, Bokara KK, Seo SK, Park SH, et al. The multifaceted effects of agmatine on functional recovery after spinal cord
                   injury through Modulations of BMP-2/4/7 expressions in neurons and glial cells. PLoS One 2013;8:e53911.
               32.  Dmitriev AE, Farhang S, Lehman RA, Ling GS, Symes AJ. Bone morphogenetic protein-2 used in spinal fusion with spinal cord injury
                   penetrates intrathecally and elicits a functional signaling cascade. Spine J 2010;10:16-25.
               33.  Ahmed S, Gull A, Khuroo T, Aqil M, Sultana Y. Glial cell: a potential target for cellular and drug based therapy in various CNS diseases.
                   Curr Pharm Des 2017;23:2389-99.
               34.  Okada S, Hara M, Kobayakawa K, Matsumoto Y, Nakashima Y. Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci
                   Res 2018;126:39-43.
               35.  Wang H, Song G, Chuang H, Chiu C, Abdelmaksoud A, et al. Portrait of glial scar in neurological diseases. Int J Immunopathol
                   Pharmacol 2018;31:2058738418801406.
               36.  Wang Y, Cheng X, He Q, Zheng Y, Kim DH, et al. Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of
                   adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. J Neurosci 2011;31:6053-8.
               37.  Xiao Q, Du Y, Wu W, Yip HK. Bone morphogenetic proteins mediate cellular response and, together with Noggin, regulate astrocyte
                   differentiation after spinal cord injury. Exp Neurol 2010;221:353-66.
               38.  Setoguchi T, Nakashima K, Takizawa T, Yanagisawa M, Ochiai W, et al. Treatment of spinal cord injury by transplantation of fetal neural
                   precursor cells engineered to express BMP inhibitor. Exp Neurol 2004;189:33-44.
               39.  North HA, Pan L, McGuire TL, Brooker S, Kessler JA. β1-Integrin alters ependymal stem cell BMP receptor localization and attenuates
                   astrogliosis after spinal cord injury. J Neurosci 2015;35:3725-33.
               40.  Lü HZ, Wang YX, Zou J, Li Y, Fu SL, et al. Differentiation of neural precursor cell-derived oligodendrocyte progenitor cells following
                   transplantation into normal and injured spinal cords. Differentiation 2010;80:228-40.
               41.  Karimi-Abdolrezaee S, Billakanti R. Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol Neurobiol
                   2012;46:251-64.
               42.  Parikh P, Hao Y, Hosseinkhani M, Patil SB, Huntley GW, et al. Regeneration of axons in injured spinal cord by activation of bone
                   morphogenetic protein/Smad1 signaling pathway in adult neurons. Proc Natl Acad Sci U S A 2011;108:E99-107.
               43.  Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010;221:3-12.
               44.  Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008;132:27-42.
               45.  Zhang XJ, Chen S, Huang KX, Le WD. Why should autophagic flux be assessed? Acta Pharmacol Sin 2013;34:595-9.
               46.  Wong YC, Holzbaur EL. Autophagosome dynamics in neurodegeneration at a glance. J Cell Sci 2015;128:1259-67.
               47.  Liu S, Sarkar C, Dinizo M, Faden AI, Koh EY, et al. Disrupted autophagy after spinal cord injury is associated with ER stress and
                   neuronal cell death. Cell Death Dis 2015;6:e1582.
               48.  Saraswat Ohri S, Bankston AN, Mullins SA, Liu Y, Andres KR, et al. Blocking autophagy in oligodendrocytes limits functional recovery
                   after spinal cord injury. J Neurosci 2018;38:5900-12.
   61   62   63   64   65   66   67   68   69   70   71