Page 112 - Read Online
P. 112

Page 290                 Cencioni. Neuroimmunol Neuroinflammation 2020;7:277-90  I  http://dx.doi.org/10.20517/2347-8659.2020.18

                   autoimmune encephalomyelitis. Cell Immunol 2005;237:123-30.
               83.  Olivares-Villagómez D, Wang Y, Lafaille JJ. Regulatory CD4(+) T cells expressing endogenous T cell receptor chains protect myelin
                   basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J Exp Med 1998;188:1883-94.
               84.  Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with
                   multiple sclerosis. J Exp Med 2004;199:971-9.
               85.  Blair PA, Chavez-Rueda KA, Evans JG, Shlomchik MJ, Eddaoudi A, et al. Selective targeting of B cells with agonistic anti-CD40 is an
                   efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice. J Immunol
                   2009;182:3492-502.
               86.  Mauri C, Blair PA. Regulatory B cells in autoimmunity: developments and controversies. Nat Rev Rheumatol 2010;6:636-43.
               87.  Schafflick D, Xu CA, Hartlehnert M, Cole M, Schulte-Mecklenbeck A, et al. Integrated single cell analysis of blood and cerebrospinal
                   fluid leukocytes in multiple sclerosis. Nat Commun 2020;11:247.
               88.  Guo J, Zhao C, Wu F, Tao L, Zhang C, et al. T follicular helper-like cells are involved in the pathogenesis of experimental autoimmune
                   encephalomyelitis. Front Immunol 2018;9:944.
               89.  Shi J, Hou S, Fang Q, Liu X, Liu X, et al. PD-1 controls follicular T helper cell positioning and function. Immunity 2018;49:264-74.e4.
               90.  McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and
                   infection. Nature 2015;523:612-6.
               91.  Zhu B, Guleria I, Khosroshahi A, Chitnis T, Imitola J, et al. Differential role of programmed death-ligand 1 [corrected] and programmed
                   death-ligand 2 [corrected] in regulating the susceptibility and chronic progression of experimental autoimmune encephalomyelitis. J
                   Immunol 2006;176:3480-9.
               92.  Kroner A, Schwab N, Ip CW, Ortler S, Göbel K, et al. Accelerated course of experimental autoimmune encephalomyelitis in PD-1-
                   deficient central nervous system myelin mutants. Am J Pathol 2009;174:2290-9.
               93.  Carter LL, Leach MW, Azoitei ML, Cui J, Pelker JW, et al. PD-1/PD-L1, but not PD-1/PD-L2, interactions regulate the severity of
                   experimental autoimmune encephalomyelitis. J Neuroimmunol 2007;182:124-34.
               94.  Pittet CL, Newcombe J, Antel JP, Arbour N. The majority of infiltrating CD8 T lymphocytes in multiple sclerosis lesions is insensitive to
                   enhanced PD-L1 levels on CNS cells. Glia 2011;59:841-56.
               95.  Chang CB, Lee SP, Chen WM, Wang CM, Song YC, et al. Dendritic cell upregulation of programmed death ligand-1 via DNA
                   demethylation inhibits experimental autoimmune encephalomyelitis. J Autoimmun 2019:102362.
               96.  Jiang TT, Martinov T, Xin L, Kinder JM, Spanier JA, et al. Programmed death-1 culls peripheral accumulation of high-affinity
                   autoreactive CD4 T cells to protect against autoimmunity. Cell Rep 2016;17:1783-94.
               97.  Mathis D, Benoist C. Aire. Annu Rev Immunol 2009;27:287-312.
               98.  Bautista JL, Lio CW, Lathrop SK, Forbush K, Liang Y, et al. Intraclonal competition limits the fate determination of regulatory T cells in
                   the thymus. Nat Immunol 2009;10:610-7.
               99.  Leung MW, Shen S, Lafaille JJ. TCR-dependent differentiation of thymic Foxp3+ cells is limited to small clonal sizes. J Exp Med
                   2009;206:2121-30.
               100. Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through
                   PD-1 and CTLA-4. Nat Immunol 2005;6:280-6.
               101. Kroner A, Mehling M, Hemmer B, Rieckmann P, Toyka KV, et al. A PD-1 polymorphism is associated with disease progression in
                   multiple sclerosis. Ann Neurol 2005;58:50-7.
               102. Javan MR, Aslani S, Zamani MR, Rostamnejad J, Asadi M, et al. Downregulation of immunosuppressive molecules, PD-1 and PD-L1 but
                   not PD-L2, in the patients with multiple sclerosis. Iran J Allergy Asthma Immunol 2016;15:296-302.
               103. Pawlak-Adamska E, Nowak O, Karabon L, Pokryszko-Dragan A, Partyka A, et al. PD-1 gene polymorphic variation is linked with first
                   symptom of disease and severity of relapsing-remitting form of MS. J Neuroimmunol 2017;305:115-27.
               104. Mohammadzadeh A, Rad IA, Ahmadi-Salmasi B. CTLA-4, PD-1 and TIM-3 expression predominantly downregulated in MS patients. J
                   Neuroimmunol 2018;323:105-8.
               105. Cencioni MT, Magliozzi R, Nicholas R, Ali R, Malik O, et al. Programmed death 1 is highly expressed on CD8+ CD57+ T cells in
                   patients with stable multiple sclerosis and inhibits their cytotoxic response to Epstein-Barr virus. Immunology 2017;152:660-76.
               106. Arruda LCM, de Azevedo JTC, de Oliveira GLV, Scortegagna GT, Rodrigues ES, et al. Immunological correlates of favorable long-term
                   clinical outcome in multiple sclerosis patients after autologous hematopoietic stem cell transplantation. Clin Immunol 2016;169:47-57.
               107. Pittet CL, Newcombe J, Prat A, Arbour N. Human brain endothelial cells endeavor to immunoregulate CD8 T cells via PD-1 ligand
                   expression in multiple sclerosis. J Neuroinflammation 2011;8:155.
               108. Gettings EJ, Hackett CT, Scott TF. Severe relapse in a multiple sclerosis patient associated with ipilimumab treatment of melanoma. Mult
                   Scler 2015;21:670.
               109. Cao Y, Nylander A, Ramanan S, Goods BA, Ponath G, et al. CNS demyelination and enhanced myelin-reactive responses after
                   ipilimumab treatment. Neurology 2016;86:1553-6.
               110.  Kyi C, Carvajal RD, Wolchok JD, Postow MA. Ipilimumab in patients with melanoma and autoimmune disease. J Immunother Cancer
                   2014;2:35.
               111.  Gerdes LA, Held K, Beltrán E, Berking C, Prinz JC, et al. CTLA4 as immunological checkpoint in the development of multiple sclerosis.
                   Ann Neurol 2016;80:294-300.
               112.  Garcia CR, Jayswal R, Adams V, Anthony LB, Villano JL. Multiple Sclerosis outcomes after cancer immunotherapy. Clin Transl Oncol
                   2019; Epub 2019 Feb 20.
               113.  Isitan C, Wesley S. Safety of checkpoint inhibitors for cancer treatment in patients with multiple sclerosis: a case report (P1.7-006).
                   Neurology 2019;92 (15 Supplement):P1.7-006.
   107   108   109   110   111   112   113   114   115   116   117