Page 111 - Read Online
P. 111

Cencioni. Neuroimmunol Neuroinflammation 2020;7:277-90  I  http://dx.doi.org/10.20517/2347-8659.2020.18                Page 289

               51.  Chua KH, Lian LH, Sim XJ, Cheah TE, Lau TP. Association between PDCD1 gene polymorphisms and risk of systemic lupus
                   erythematosus in three main ethnic groups of the malaysian population. Int J Mol Sci 2015;16:9794-803.
               52.  Lee YH, Woo JH, Choi SJ, Ji JD, Song GG. Association of programmed cell death 1 polymorphisms and systemic lupus erythematosus: a
                   meta-analysis. Lupus 2009;18:9-15.
               53.  Fathi F, Sadeghi E, Lotfi N, Hafezi H, Ahmadi M, et al. Effects of the programmed cell death 1 (PDCD1) polymorphisms in susceptibility
                   to systemic lupus erythematosus. Int J Immunogenet 2020;47:57-64.
               54.  Bach JF. Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev 1994;15:516-42.
               55.  Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med
                   2006;203:883-95.
               56.  Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, et al. Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I
                   diabetes. Proc Natl Acad Sci U S A 2005;102:11823-8.
               57.  Ansari MJ, Salama AD, Chitnis T, Smith RN, Yagita H, et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in
                   nonobese diabetic (NOD) mice. J Exp Med 2003;198:63-9.
               58.  Fife BT, Pauken KE. The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann N Y Acad Sci 2011;1217:45-59.
               59.  Salama AD, Chitnis T, Imitola J, Ansari MJ, Akiba H, et al. Critical role of the programmed death-1 (PD-1) pathway in regulation of
                   experimental autoimmune encephalomyelitis. J Exp Med 2003;198:71-8.
               60.  Nielsen C, Hansen D, Husby S, Jacobsen BB, Lillevang ST. Association of a putative regulatory polymorphism in the PD-1 gene with
                   susceptibility to type 1 diabetes. Tissue Antigens 2003;62:492-7.
               61.  Pauken KE, Jenkins MK, Azuma M, Fife BT. PD-1, but not PD-L1, expressed by islet-reactive CD4+ T cells suppresses infiltration of the
                   pancreas during type 1 diabetes. Diabetes 2013;62:2859-69.
               62.  Zhao P, Wang P, Dong S, Zhou Z, Cao Y, et al. Depletion of PD-1-positive cells ameliorates autoimmune disease. Nat Biomed Eng
                   2019;3:292-305.
               63.  Sawcer S. The genetic aspects of multiple sclerosis. Ann Indian Acad Neurol 2009;12:206-14.
               64.  Gourraud PA, Harbo HF, Hauser SL, Baranzini SE. The genetics of multiple sclerosis: an up-to-date review. Immunol Rev
                   2012;248:87-103.
               65.  Choi SR, Howell OW, Carassiti D, Magliozzi R, Gveric D, et al. Meningeal inflammation plays a role in the pathology of primary
                   progressive multiple sclerosis. Brain 2012;135:2925-37.
               66.  Komori M, Blake A, Greenwood M, Lin YC, Kosa P, et al. Cerebrospinal fluid markers reveal intrathecal inflammation in progressive
                   multiple sclerosis. Ann Neurol 2015;78:3-20.
               67.  Magliozzi R, Marastoni D, Rossi S, Castellaro M, Mazziotti V, et al. Increase of CSF inflammatory profile in a case of highly active
                   multiple sclerosis. BMC Neurol 2019;19:231.
               68.  Machado-Santos J, Saji E, Tröscher AR, Paunovic M, Liblau R, et al. The compartmentalized inflammatory response in the multiple
                   sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 2018;141:2066-82.
               69.  Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, et al.; AFFIRM Investigators. A randomized, placebo-controlled trial
                   of natalizumab for relapsing multiple sclerosis. N Engl J Med 2006;354:899-910.
               70.  Ben-Nun A, Cohen IR. Vaccination against autoimmune encephalomyelitis (EAE): attenuated autoimmune T lymphocytes confer
                   resistance to induction of active EAE but not to EAE mediated by the intact T lymphocyte line. Eur J Immunol 1981;11:949-52.
               71.  Pettinelli CB, McFarlin DE. Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph
                   node cells by myelin basic protein: requirement for Lyt 1+ 2- T lymphocytes. J Immunol 1981;127:1420-3.
               72.  Renno T, Krakowski M, Piccirillo C, Lin JY, Owens T. TNF-alpha expression by resident microglia and infiltrating leukocytes in the
                   central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J Immunol 1995;154:944-53.
               73.  Chitnis T, Najafian N, Abdallah KA, Dong V, Yagita H, et al. CD28-independent induction of experimental autoimmune
                   encephalomyelitis. J Clin Invest 2001;107:575-83.
               74.  Furtado GC, Marcondes MC, Latkowski JA, Tsai J, Wensky A, et al. Swift entry of myelin-specific T lymphocytes into the central
                   nervous system in spontaneous autoimmune encephalomyelitis. J Immunol 2008;181:4648-55.
               75.  Ellmerich S, Mycko M, Takacs K, Waldner H, Wahid FN, et al. High incidence of spontaneous disease in an HLA-DR15 and TCR
                   transgenic multiple sclerosis model. J Immunol 2005;174:1938-46.
               76.  Ferber IA, Brocke S, Taylor-Edwards C, Ridgway W, Dinisco C, et al. Mice with a disrupted IFN-gamma gene are susceptible to the
                   induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 1996;156:5-7.
               77.  Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA. IFN-gamma plays a critical down-regulatory role in the induction
                   and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 1996;157:3223-7.
               78.  Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, et al. The orphan nuclear receptor RORgammat directs the differentiation
                   program of proinflammatory IL-17+ T helper cells. Cell 2006;126:1121-33.
               79.  Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, et al. IL-23 drives a pathogenic T cell population that induces
                   autoimmune inflammation. J Exp Med 2005;201:233-40.
               80.  Veldhoen M, Stockinger B. TGFbeta1, a “Jack of all trades”: the link with pro-inflammatory IL-17-producing T cells. Trends Immunol
                   2006;27:358-61.
               81.  Jäger A, Dardalhon V, Sobel RA, Bettelli E, Kuchroo VK. Th1, Th17, and Th9 effector cells induce experimental autoimmune
                   encephalomyelitis with different pathological phenotypes. J Immunol 2009;183:7169-77.
               82.  Hofstetter HH, Ibrahim SM, Koczan D, Kruse N, Weishaupt A, et al. Therapeutic efficacy of IL-17 neutralization in murine experimental
   106   107   108   109   110   111   112   113   114   115   116