Page 426 - Read Online
P. 426

Page 10 of 11               Davis et al. Neuroimmunol Neuroinflammation 2018;5:50  I  http://dx.doi.org/10.20517/2347-8659.2018.60


                   activated microglia cells. Int Immunopharmacol 2015;24:369-76.
               17.  Vinoth Kumar R, Oh TW, Park YK. Anti-inflammatory effects of Ginsenoside-Rh2 inhibits LPS-induced activation of microglia and
                   overproduction of inflammatory mediators via modulation of TGF-beta1/Smad pathway. Neurochem Res 2016;41:951-7.
               18.  Chen Z, Trapp BD. Microglia and neuroprotection. J Neurochem 2016;136 Suppl 1:10-7.
               19.  Pena-Altamira E, Prati F, Massenzio F, Virgili M, Contestabile A, et al. Changing paradigm to target microglia in neurodegenerative
                   diseases: from anti-inflammatory strategy to active immunomodulation. Expert Opin Ther Targets 2016;20:627-40.
               20.  Jucaite A, Svenningsson P, Rinne JO, Cselenyi Z, Varnas K, et al. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a
                   PET study in Parkinson’s disease. Brain 2015;138:2687-700.
               21.  Husain MI, Chaudhry IB, Husain N, Khoso AB, Rahman RR, et al. Minocycline as an adjunct for treatment-resistant depressive
                   symptoms: a pilot randomised placebo-controlled trial. J Psychopharmacol 2017;31:1166-75.
               22.  Moller T, Bard F, Bhattacharya A, Biber K, Campbell B, et al. Critical data-based re-evaluation of minocycline as a putative specific
                   microglia inhibitor. Glia 2016;64:1788-94.
               23.  Stansley B, Post J, Hensley K. A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease.
                   J Neuroinflammation 2012;9:115.
               24.  Horvath RJ, Nutile-McMenemy N, Alkaitis MS, Deleo JA. Differential migration, LPS-induced cytokine, chemokine, and NO
                   expression in immortalized BV-2 and HAPI cell lines and primary microglial cultures. J Neurochem 2008;107:557-69.
               25.  Sarkar S, Malovic E, Sarda D, Lawana V, Rokad D, et al. Characterization and comparative analysis of a new mouse microglial cell
                   model for studying neuroinflammatory mechanisms during neurotoxic insults. Neurotoxicology 2018;67:129-40.
               26.  Periyasamy P, Liao K, Kook YH, Niu F, Callen SE, et al. Cocaine-mediated downregulation of miR-124 activates microglia by targeting
                   KLF4 and TLR4 signaling. Mol Neurobiol 2018;55:3196-210.
               27.  Lam D, Lively S, Schlichter LC. Responses of rat and mouse primary microglia to pro- and anti-inflammatory stimuli: molecular
                   profiles, K(+) channels and migration. J Neuroinflammation 2017;14:166.
               28.  Yuan L, Liu S, Bai X, Gao Y, Liu G, et al. Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates
                   microglial activation in lipopolysaccharide-treated mice. J Neuroinflammation 2016;13:77.
               29.  Wang H, Liu C, Han M, Cheng C, Zhang D. TRAM1 promotes microglia M1 polarization. J Mol Neurosci 2016;58:287-96.
               30.  Cao Q, Karthikeyan A, Dheen ST, Kaur C, Ling EA. Production of proinflammatory mediators in activated microglia is synergistically
                   regulated by Notch-1, glycogen synthase kinase (GSK-3beta) and NF-kappaB/p65 signalling. PLoS One 2017;12:e0186764.
               31.  Melief J, Sneeboer MA, Litjens M, Ormel PR, Palmen SJ, et al. Characterizing primary human microglia: a comparative study with
                   myeloid subsets and culture models. Glia 2016;64:1857-68.
               32.  Si Q, Zhao ML, Morgan AC, Brosnan CF, Lee SC. 15-deoxy-Delta12,14-prostaglandin J2 inhibits IFN-inducible protein 10/CXC
                   chemokine ligand 10 expression in human microglia: mechanisms and implications. J Immunol 2004;173:3504-13.
               33.  Peferoen LA, Vogel DY, Ummenthum K, Breur M, Heijnen PD, et al. Activation status of human microglia is dependent on lesion
                   formation stage and remyelination in multiple sclerosis. J Neuropathol Exp Neurol 2015;74:48-63.
               34.  Olajide OA, Aderogba MA, Fiebich BL. Mechanisms of anti-inflammatory property of Anacardium occidentale stem bark: inhibition of
                   NF-kappaB and MAPK signalling in the microglia. J Ethnopharmacol 2013;145:42-9.
               35.  McManus CM, Brosnan CF, Berman JW. Cytokine induction of MIP-1 alpha and MIP-1 beta in human fetal microglia. J Immunol
                   1998;160:1449-55.
               36.  Pinteaux E, Parker LC, Rothwell NJ, Luheshi GN. Expression of interleukin-1 receptors and their role in interleukin-1 actions in murine
                   microglial cells. J Neurochem 2002;83:754-63.
               37.  Garcia-Mesa Y, Jay TR, Checkley MA, Luttge B, Dobrowolski C, et al. Immortalization of primary microglia: a new platform to study
                   HIV regulation in the central nervous system. J Neurovirol 2017;23:47-66.
               38.  Nagai A, Nakagawa E, Hatori K, Choi HB, McLarnon JG, et al. Generation and characterization of immortalized human microglial cell
                   lines: expression of cytokines and chemokines. Neurobiol Dis 2001;8:1057-68.
               39.  Janabi N, Peudenier S, Heron B, Ng KH, Tardieu M. Establishment of human microglial cell lines after transfection of primary cultures
                   of embryonic microglial cells with the SV40 large T antigen. Neurosci Lett 1995;195:105-8.
               40.  Mendiola AS, Cardona AE. The IL-1beta phenomena in neuroinflammatory diseases. J Neural Transm (Vienna) 2018;125:781-95.
               41.  Facci L, Barbierato M, Zusso M, Skaper SD, Giusti P. Serum amyloid A primes microglia for ATP-dependent interleukin-1beta release.
                   J Neuroinflammation 2018;15:164.
               42.  Sun M, Brady RD, Wright DK, Kim HA, Zhang SR, et al. Treatment with an interleukin-1 receptor antagonist mitigates
                   neuroinflammation and brain damage after polytrauma. Brain Behav Immun 2017;66:359-71.
               43.  Spencer SJ, D’Angelo H, Soch A, Watkins LR, Maier SF, et al. High-fat diet and aging interact to produce neuroinflammation and
                   impair hippocampal- and amygdalar-dependent memory. Neurobiol Aging 2017;58:88-101.
               44.  Figueroa-Hall LK, Anderson MB, Das S, Stevens CW, Davis RL. LPS-induced TLR4 neuroinflammatory sugnaling in CHME-5
                   microglial cells. Neuroimmunol Neuroinflammation 2017;4:219-31.
               45.  Davis RL, Das S, Buck DJ, Stevens CW. Beta-funaltrexamine inhibits chemokine (CXCL10) expression in normal human astrocytes.
                   Neurochem Int 2013;62:478-85.
               46.  Satoh J, Kino Y, Asahina N, Takitani M, Miyoshi J, et al. TMEM119 marks a subset of microglia in the human brain. Neuropathology
                   2016;36:39-49.
               47.  Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, et al. New tools for studying microglia in the mouse and human CNS.
                   Proc Natl Acad Sci U S A 2016;113:E1738-46.
               48.  Attaai A, Neidert N, von Ehr A, Potru PS, Zoller T, et al. Postnatal maturation of microglia is associated with alternative activation and
                   activated TGFbeta signaling. Glia 2018; doi: 10.1002/glia.23332.
               49.  Zrzavy T, Hoftberger R, Berger T, Rauschka H, Butovsky O, et al. Pro-inflammatory activation of microglia in the brain of patients with
   421   422   423   424   425   426   427   428   429   430   431