Page 328 - Read Online
P. 328

Page 14 of 14       Darbinyan et al. Neuroimmunol Neuroinflammation 2018;5:41  I  http://dx.doi.org/10.20517/2347-8659.2018.33


                   and inflammation following myocardial infarction. IUBMB Life 2015;67:611-8.
               14.  Klebe D, McBride D, Flores JJ, Zhang JH, Tang J. Modulating the immune response towards a neuroregenerative peri-injury milieu af-
                   ter gerebral hemorrhage. J Neuroimmune Pharmacol 2015;10:576-86.
               15.  Kreutzberg GW. Microglia, the first line of defence in brain pathologies. Arzneimittelforschung 1995;45:357-60.
               16.  Streit WJ, Walter SA, Pennell NA. Reactive microgliosis. Prog Neurobiol 1999;57:563-81.
               17.  Kondo H, Kondo S, Irezawa H, Murata R. Studies on the quantitative method for determination of hemorrhagic activity of Habu snake
                   venom. Jpn J Med Sci Biol 1960;13:43-52.
               18.  Randhawa MA. Calculation of LD50 values from the method of Miller and Tainter, 1944. J Ayub Med Coll Abbottabad 2009;21:184-5.
               19.  Chilingaryan A, Chilingaryan AM, Martin GG. The three-dimensional detection of microvasculatory bed in the brain of white rat Rattus
                   norvegicus by a Ca2+-ATPase method. Brain Res 2006;1070:131-8.
               20.  Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. Amsterdam: Elsevier; 2007.
               21.  Abràmoff MD, Magalhães PJ, Ram SJ. Image Processing with ImageJ. Biophotonics Int 2004;11:36-42.
               22.  Archundia IG, de Roodt AR, Ramos-Cerrillo B, Chippaux JP, Olguín-Pérez L, Alagón A, Stock RP. Neutralization of Vipera and Macro-
                   vipera venoms by two experimental polyvalent antisera: a study of paraspecificity. Toxicon 2011;57:1049-56.
               23.  Kurtović T, Lang Balija M, Ayvazyan N, Halassy B. Paraspecificity of Vipera a. ammodytes-specific antivenom towards Montivipera
                   raddei and Macrovipera lebetina obtusa venoms. Toxicon 2014;78:103-12.
               24.  Bell KL, Sutherland SK, Hodgson WC. Some pharmacological studies of venom from the inland taipan (Oxyuranus microlepidotus).
                   Toxicon 1998;36:63-74.
               25.  Perry VH, Teeling J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic in-
                   flammation to chronic neurodegeneration. Semin Immunopathol 2013;35:601-12.
               26.  Graeber MB, Li W, Rodriguez ML. Role of microglia in CNS inflammation. FEBS Lett 2011;585:3798-805.
               27.  Kettenmann H, Verkhratsky A. Neuroglia--living nerve glue. Fortschr Neurol Psychiatr 2011;79:588-97.
               28.  Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutiérrez JM. Venoms, venomics, antivenomics. FEBS Lett 2009;583:1736-43.
               29.  Tremblay MÈ, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A. The role of microglia in the healthy brain. J Neurosci
                   2011;31:16064-9.
               30.  Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo
                   and determine the fate of ischemic terminals. J Neurosci 2009;29:3974-80.
               31.  Wan S, Cheng Y, Jin H, Guo D, Hua Y, Keep RF, Xi G. Microglia activation and polarization after intracerebral hemorrhage in mice: the
                   role of protease-activated receptor-1. Transl Stroke Res 2016;7:478-87.
               32.  Gyoneva S, Davalos D, Biswas D, Swanger SA, Garnier-Amblard E, Loth F, Akassoglou K, Traynelis SF. Systemic inflammation regu-
                   lates microglial responses to tissue damage in vivo. Glia 2014;62:1345-60.
               33.  Walker FR, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr
                   Drug Targets 2013;14:1262-76.
               34.  Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neu-
                   robiol 2005;76:77-98.
               35.  Tremblay MÈ, Lecours C, Samson L, Sánchez-Zafra V, Sierra A. From the Cajal alumni Achúcarro and Río-Hortega to the rediscovery
                   of never-resting microglia. Front Neuroanat 2015;9:45.
               36.  Hovens IB, Nyakas C, Schoemaker RG. A novel method for evaluating microglial activation using ionized calcium-binding adaptor pro-
                   tein-1 staining: cell body to cell size ratio. Neuroimmunol Neuroinflammation 2014;1:82-8.
               37.  Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res
                   2011;2:492-516.
               38.  Florczak-Rzepka M, Grond-Ginsbach C, Montaner J, Steiner T. Matrix metalloproteinases in human spontaneous intracerebral hemor-
                   rhage: an update. Cerebrovasc Dis 2012;34;249-62.
               39.  Bilbo SD, Schwarz JM. Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav
                   Neurosci 2009;3:14.
               40.  Bell-Temin H, Culver-Cochran AE, Chaput D, Carlson CM, Kuehl M, Burkhardt BR, Bickford PC, Liu B, Stevens SM Jr. Novel mo-
                   lecular insights into classical and alternative activation states of microglia as revealed by stable isotope labeling by amino acids in cell
                   culture (silac)-based proteomics. Mol Cell Proteomics 2015;14:3173-84.
   323   324   325   326   327   328   329   330   331   332   333