Page 81 - Read Online
P. 81

Page 12 of 16                  Renzi et al. Microbiome Res Rep 2024;3:2  https://dx.doi.org/10.20517/mrr.2023.27

                    2018;175:1533-45.e20.  DOI  PubMed  PMC
               13.       Hernández-Santos N, Klein BS. Through the scope darkly: the gut mycobiome comes into focus. Cell Host Microbe 2017;22:728-9.
                    DOI  PubMed  PMC
               14.       Alou M, Naud S, Khelaifia S, Bonnet M, Lagier JC, Raoult D. State of the art in the culture of the human microbiota: new interests
                    and strategies. Clin Microbiol Rev 2020;34:e00129-19.  DOI  PubMed  PMC
               15.       Vu D, Groenewald M, Szöke S, et al. DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds
                    for yeast species and genera delimitation. Stud Mycol 2016;85:91-105.  DOI  PubMed  PMC
               16.       Makimura K. Species identification system for dermatophytes based on the DNA sequences of nuclear ribosomal internal transcribed
                    spacer 1. Nihon Ishinkin Gakkai Zasshi 2001;42:61-7.  DOI  PubMed
               17.       Leaw SN, Chang HC, Sun HF, Barton R, Bouchara JP, Chang TC. Identification of medically important yeast species by sequence
                    analysis of the internal transcribed spacer regions. J Clin Microbiol 2006;44:693-9.  DOI  PubMed  PMC
               18.       Del Campo J, Pons MJ, Herranz M, et al. Validation of a universal set of primers to study animal-associated microeukaryotic
                    communities. Environ Microbiol 2019;21:3855-61.  DOI  PubMed
               19.       del Campo J, Bass D, Keeling PJ, Bennett A. The eukaryome: diversity and role of microeukaryotic organisms associated with
                    animal hosts. Functional Ecology 2020;34:2045-54.  DOI
               20.       Parfrey LW, Walters WA, Knight R. Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Front
                    Microbiol 2011;2:153.  DOI  PubMed  PMC
               21.       Andersen LO, Vedel Nielsen H, Stensvold CR. Waiting for the human intestinal Eukaryotome. ISME J 2013;7:1253-5.  DOI
                    PubMed  PMC
               22.       Franco-Duarte R, Mendes I, Gomes AC, Santos MA, de Sousa B, Schuller D. Genotyping of Saccharomyces cerevisiae strains by
                    interdelta sequence typing using automated microfluidics. Electrophoresis 2011;32:1447-55.  DOI  PubMed
               23.       Lücking R, Aime MC, Robbertse B, et al. Unambiguous identification of fungi: where do we stand and how accurate and precise is
                    fungal DNA barcoding? IMA Fungus 2020;11:14.  DOI  PubMed  PMC
               24.       Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode
                    marker for Fungi. Proc Natl Acad Sci U S A 2012;109:6241-6.  DOI  PubMed  PMC
               25.       Knight R, Vrbanac A, Taylor BC, et al. Best practices for analysing microbiomes. Nat Rev Microbiol 2018;16:410-22.  DOI
               26.       Gillevet PM, Sikaroodi M, Torzilli AP. Analyzing salt-marsh fungal diversity: comparing ARISA fingerprinting with clone
                    sequencing and pyrosequencing. Fungal Ecology 2009;2:160-7.  DOI
               27.       Ghannoum MA, Jurevic RJ, Mukherjee PK, et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals.
                    PLoS Pathog 2010;6:e1000713.  DOI  PubMed  PMC
               28.       Kurtzman CP, Sugiyama J. 1 Saccharomycotina and taphrinomycotina: the yeasts and yeastlike fungi of the ascomycota. In:
                    Mclaughlin DJ, Spatafora JW, editors. Systematics and Evolution. Berlin: Springer Berlin Heidelberg; 2015. p. 3-33.  DOI
               29.       Kurtzman CP, Fell JW, Boekhout T. Chapter 1 - Definition, classification and nomenclature of the yeasts. In: The Yeasts. Elsevier;
                    2011. p. 3-5. DOI
               30.       Li Y, Steenwyk JL, Chang Y, et al. A genome-scale phylogeny of the kingdom fungi. Curr Biol 2021;31:1653-65.e5.  DOI  PubMed
                    PMC
               31.       Żymańczyk-duda E, Brzezińska-rodak M, Klimek-ochab M, Duda M, Zerka A. Yeast as a versatile tool in biotechnology. In: Morata
                    A, Loira I, editors. Yeast - Industrial Applications. InTech; 2017.  DOI
               32.       Boekhout T, Aime MC, Begerow D, et al. The evolving species concepts used for yeasts: from phenotypes and genomes to speciation
                    networks. Fungal Divers 2021;109:27-55.  DOI  PubMed  PMC
               33.       Hawksworth DL. The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 2001;105:1422-32.  DOI
               34.       Blackwell M. The fungi: 1, 2, 3 ... 5.1 million species? Am J Bot 2011;98:426-38.  DOI  PubMed
               35.       Hawksworth DL, Lücking R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 2017;5.  DOI  PubMed
               36.       Cheek M, Nic Lughadha E, Kirk P, et al. New scientific discoveries: plants and fungi. Plants People Planet 2020;2:371-88.  DOI
               37.       Lücking R, Aime MC, Robbertse B, et al. Fungal taxonomy and sequence-based nomenclature. Nat Microbiol 2021;6:540-8.  DOI
                    PubMed  PMC
               38.       Huseyin CE, O'Toole PW, Cotter PD, Scanlan PD. Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol
                    Rev 2017;41:479-511.  DOI  PubMed
               39.       Naranjo-Ortiz MA, Gabaldón T. Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol Rev Camb Philos Soc
                    2019;94:2101-37.  DOI  PubMed  PMC
               40.       Suhr MJ, Hallen-Adams HE. The human gut mycobiome: pitfalls and potentials - a mycologist’s perspective. Mycologia
                    2015;107:1057-73.  PubMed
               41.       Hinsu A, Dumadiya A, Joshi A, et al. To culture or not to culture: a snapshot of culture-dependent and culture-independent bacterial
                    diversity from peanut rhizosphere. PeerJ 2021;9:e12035.  DOI  PubMed  PMC
               42.       Strati F, Di Paola M, Stefanini I, et al. Age and gender affect the composition of fungal population of the human gastrointestinal tract.
                    Front Microbiol 2016;7:1227.  DOI  PubMed  PMC
               43.       Browne HP, Forster SC, Anonye BO, et al. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive
                    sporulation. Nature 2016;533:543-6.  DOI  PubMed  PMC
               44.       Gutleben J, Chaib De Mares M, van Elsas JD, Smidt H, Overmann J, Sipkema D. The multi-omics promise in context: from sequence
   76   77   78   79   80   81   82   83   84   85   86