Page 83 - Read Online
P. 83

Page 14 of 16                  Renzi et al. Microbiome Res Rep 2024;3:2  https://dx.doi.org/10.20517/mrr.2023.27

                    Environ Microbiol 2017;83:e00905-17.  DOI  PubMed  PMC
               75.       Kiss L. Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proc Natl Acad
                    Sci U S A 2012;109:E1811; author reply E1812.  DOI  PubMed  PMC
               76.       Stielow JB, Lévesque CA, Seifert KA, et al. One fungus, which genes? Development and assessment of universal primers for
                    potential secondary fungal DNA barcodes. Persoonia 2015;35:242-63.  DOI
               77.       James TY, Kauff F, Schoch CL, et al. Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 2006;443:818-
                    22.  DOI  PubMed
               78.       Matheny PB, Liu YJ, Ammirati JF, Hall BD. Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe,
                    Agaricales). Am J Bot 2002;89:688-98.  DOI  PubMed
               79.       Meyer W, Irinyi L, Hoang MTV, et al. Database establishment for the secondary fungal DNA barcode translational elongation factor
                            1
                    1α (TEF1α) . Genome 2019;62:160-9.  DOI
               80.       Větrovský T, Kolařík M, Žifčáková L, Zelenka T, Baldrian P. The rpb2 gene represents a viable alternative molecular marker for the
                    analysis of environmental fungal communities. Mol Ecol Resour 2016;16:388-401.  DOI  PubMed
               81.       Morrison GA, Fu J, Lee GC, et al. Nanopore sequencing of the fungal intergenic spacer sequence as a potential rapid diagnostic
                    assay. J Clin Microbiol 2020;58:e01972-20.  DOI  PubMed  PMC
               82.       Geiser DM, Frisvad JC, Taylor JW. Evolutionary relationships in Aspergillus section Fumigati inferred from partial β-tubulin and
                    hydrophobin DNA sequences. Mycologia 1998;90:831-45.  DOI
               83.       Hu T, Chitnis N, Monos D, Dinh A. Next-generation sequencing technologies: an overview. Hum Immunol 2021;82:801-11.  DOI
                    PubMed
               84.       Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol
                    2017;35:833-44.  DOI  PubMed
               85.       Morgan  XC,  Huttenhower  C.  Meta’omic  analytic  techniques  for  studying  the  intestinal  microbiome.  Gastroenterology
                    2014;146:1437-48.e1.  DOI  PubMed
               86.       Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207-14.  DOI
                    PubMed  PMC
               87.       Nash AK, Auchtung TA, Wong MC, et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome
                    2017;5:153.  DOI  PubMed  PMC
               88.       Hoang MTV, Irinyi L, Hu Y, Schwessinger B, Meyer W. Long-reads-based metagenomics in clinical diagnosis with a special focus
                    on fungal infections. Front Microbiol 2021;12:708550.  DOI  PubMed  PMC
               89.       Pollard MO, Gurdasani D, Mentzer AJ, Porter T, Sandhu MS. Long reads: their purpose and place. Hum Mol Genet 2018;27:R234-
                    41.  DOI  PubMed  PMC
               90.       Mantere T, Kersten S, Hoischen A. Long-read sequencing emerging in medical genetics. Front Genet 2019;10:426.  DOI  PubMed
                    PMC
               91.       Sui Y, Wisniewski M, Droby S, Piombo E, Wu X, Yue J. Genome sequence, assembly, and characterization of the antagonistic yeast
                    candida oleophila used as a biocontrol agent against post-harvest diseases. Front Microbiol 2020;11:295.  DOI  PubMed  PMC
               92.       Cuomo CA, Shea T, Yang B, Rao R, Forche A. Whole genome sequence of the heterozygous clinical isolate candida krusei 81-B-5.
                    G3 2017;7:2883-9.  DOI  PubMed  PMC
               93.       Luo R, Zimin A, Workman R, et al. First draft genome sequence of the pathogenic fungus Lomentospora prolificans (Formerly
                    Scedosporium prolificans). G3 2017;7:3831-6.  DOI  PubMed  PMC
               94.       Vale-Silva L, Beaudoing E, Tran VDT, Sanglard D. Comparative genomics of two sequential candida glabrata clinical isolates. G3
                    2017;7:2413-26.  DOI  PubMed  PMC
               95.       Panthee S, Hamamoto H, Ishijima SA, Paudel A, Sekimizu K. Utilization of hybrid assembly approach to determine the genome of an
                    opportunistic pathogenic fungus, candida albicans TIMM 1768. Genome Biol Evol 2018;10:2017-22.  DOI  PubMed  PMC
               96.       Rhodes J, Abdolrasouli A, Farrer RA, et al. Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen
                    Candida auris. Emerg Microbes Infect 2018;7:43.  DOI  PubMed  PMC
               97.       Morand SC, Bertignac M, Iltis A, et al. Complete genome sequence of Malassezia restricta CBS 7877, an opportunist pathogen
                    involved in dandruff and seborrheic dermatitis. Microbiol Resour Announc 2019;8:e01543-18.  DOI  PubMed  PMC
               98.       Schultzhaus Z, Cuomo CA, Wang Z. Genome sequence of the black yeast exophiala lecanii-corni. Microbiol Resour Announc
                    2019;8:e01709-18.  DOI  PubMed  PMC
               99.       Pchelin IM, Azarov DV, Churina MA, et al. Whole genome sequence of first Candida auris strain, isolated in Russia. Med Mycol
                    2020;58:414-6.  DOI
               100.      Arnaud MB, Chibucos MC, Costanzo MC, et al. The aspergillus genome database, a curated comparative genomics resource for gene,
                    protein and sequence information for the Aspergillus research community. Nucleic Acids Res 2010;38:D420-7.  DOI  PubMed  PMC
               101.      Ratnasingham S, Hebert PD. bold: The barcode of life data system (http://www.barcodinglife.org). Mol Ecol Notes 2007;7:355-64.
                    DOI  PubMed  PMC
               102.      Inglis DO, Arnaud MB, Binkley J, et al. The Candida genome database incorporates multiple Candida species: multispecies search
                    and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata. Nucleic Acids Res
                    2012;40:D667-74.  DOI  PubMed  PMC
               103.      Güldener U, Münsterkötter M, Kastenmüller G, et al. CYGD: the comprehensive yeast genome database. Nucleic Acids Res
   78   79   80   81   82   83   84   85   86   87   88