Page 36 - Read Online
P. 36

Page 6 of 6               Poulos et al. Mini-invasive Surg. 2025;9:6  https://dx.doi.org/10.20517/2574-1225.2024.42

                   spots during esophagogastroduodenoscopy. Gut. 2019;68:2161-9.  DOI  PubMed  PMC
               15.      Duits LC, Khoshiwal AM, Frei NF, et al; Barrett’s SURF LGD Study Pathologists Consortium. An automated tissue systems
                   pathology test can standardize the management and improve health outcomes for patients with Barrett’s esophagus. Am J
                   Gastroenterol. 2023;118:2025-32.  DOI  PubMed  PMC
               16.      Rice TW, Lu M, Ishwaran H, Blackstone EH; Worldwide Esophageal Cancer Collaboration Investigators. Precision surgical therapy
                   for adenocarcinoma of the esophagus and esophagogastric junction. J Thorac Oncol. 2019;14:2164-75.  DOI  PubMed  PMC
               17.      Sato F, Shimada Y, Selaru FM, et al. Prediction of survival in patients with esophageal carcinoma using artificial neural networks.
                   Cancer. 2005;103:1596-605.  DOI  PubMed
               18.      Warnecke-Eberz U, Metzger R, Bollschweiler E, et al. TaqMan low-density arrays and analysis by artificial neuronal networks predict
                   response to neoadjuvant chemoradiation in esophageal cancer. Pharmacogenomics. 2010;11:55-64.  DOI  PubMed
               19.      Ypsilantis PP, Siddique M, Sohn HM, et al. Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional
                   neural networks. PLoS One. 2015;10:e0137036.  DOI  PubMed  PMC
               20.      Gupta A, Singla T, Chennatt JJ, David LE, Ahmed SS, Rajput D. Artificial intelligence: a new tool in surgeon’s hand. J Educ Health
                   Promot. 2022;11:93.  DOI  PubMed  PMC
               21.      Anteby R, Horesh N, Soffer S, et al. Deep learning visual analysis in laparoscopic surgery: a systematic review and diagnostic test
                   accuracy meta-analysis. Surg Endosc. 2021;35:1521-33.  DOI  PubMed
               22.      den Boer RB, Jaspers TJM, de Jongh C, et al. Deep learning-based recognition of key anatomical structures during robot-assisted
                   minimally invasive esophagectomy. Surg Endosc. 2023;37:5164-75.  DOI  PubMed  PMC
               23.      Sato K, Fujita T, Matsuzaki H, et al. Real-time detection of the recurrent laryngeal nerve in thoracoscopic esophagectomy using
                   artificial intelligence. Surg Endosc. 2022;36:5531-9.  DOI  PubMed
               24.      Takeuchi M, Kawakubo H, Saito K, et al. Automated surgical-phase recognition for robot-assisted minimally invasive esophagectomy
                   using artificial intelligence. Ann Surg Oncol. 2022;29:6847-55.  DOI  PubMed
               25.      Zhao Z, Cheng X, Sun X, Ma S, Feng H, Zhao L. Prediction model of anastomotic leakage among esophageal cancer patients after
                   receiving an esophagectomy: machine learning approach. JMIR Med Inform. 2021;9:e27110.  DOI  PubMed  PMC
               26.      van de Beld JJ, Crull D, Mikhal J, et al. Complication prediction after esophagectomy with machine learning. Diagnostics.
                   2024;14:439.  DOI  PubMed  PMC
               27.      Bolourani S, Tayebi MA, Diao L, et al. Using machine learning to predict early readmission following esophagectomy. J Thorac
                   Cardiovasc Surg. 2021;161:1926-39.e8.  DOI  PubMed
               28.      Jung JO, Pisula JI, Bozek K, et al. Prediction of postoperative complications after oesophagectomy using machine-learning methods.
                   Br J Surg. 2023;110:1361-6.  DOI  PubMed
   31   32   33   34   35   36   37   38   39   40   41