Page 36 - Read Online
P. 36
Page 6 of 6 Poulos et al. Mini-invasive Surg. 2025;9:6 https://dx.doi.org/10.20517/2574-1225.2024.42
spots during esophagogastroduodenoscopy. Gut. 2019;68:2161-9. DOI PubMed PMC
15. Duits LC, Khoshiwal AM, Frei NF, et al; Barrett’s SURF LGD Study Pathologists Consortium. An automated tissue systems
pathology test can standardize the management and improve health outcomes for patients with Barrett’s esophagus. Am J
Gastroenterol. 2023;118:2025-32. DOI PubMed PMC
16. Rice TW, Lu M, Ishwaran H, Blackstone EH; Worldwide Esophageal Cancer Collaboration Investigators. Precision surgical therapy
for adenocarcinoma of the esophagus and esophagogastric junction. J Thorac Oncol. 2019;14:2164-75. DOI PubMed PMC
17. Sato F, Shimada Y, Selaru FM, et al. Prediction of survival in patients with esophageal carcinoma using artificial neural networks.
Cancer. 2005;103:1596-605. DOI PubMed
18. Warnecke-Eberz U, Metzger R, Bollschweiler E, et al. TaqMan low-density arrays and analysis by artificial neuronal networks predict
response to neoadjuvant chemoradiation in esophageal cancer. Pharmacogenomics. 2010;11:55-64. DOI PubMed
19. Ypsilantis PP, Siddique M, Sohn HM, et al. Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional
neural networks. PLoS One. 2015;10:e0137036. DOI PubMed PMC
20. Gupta A, Singla T, Chennatt JJ, David LE, Ahmed SS, Rajput D. Artificial intelligence: a new tool in surgeon’s hand. J Educ Health
Promot. 2022;11:93. DOI PubMed PMC
21. Anteby R, Horesh N, Soffer S, et al. Deep learning visual analysis in laparoscopic surgery: a systematic review and diagnostic test
accuracy meta-analysis. Surg Endosc. 2021;35:1521-33. DOI PubMed
22. den Boer RB, Jaspers TJM, de Jongh C, et al. Deep learning-based recognition of key anatomical structures during robot-assisted
minimally invasive esophagectomy. Surg Endosc. 2023;37:5164-75. DOI PubMed PMC
23. Sato K, Fujita T, Matsuzaki H, et al. Real-time detection of the recurrent laryngeal nerve in thoracoscopic esophagectomy using
artificial intelligence. Surg Endosc. 2022;36:5531-9. DOI PubMed
24. Takeuchi M, Kawakubo H, Saito K, et al. Automated surgical-phase recognition for robot-assisted minimally invasive esophagectomy
using artificial intelligence. Ann Surg Oncol. 2022;29:6847-55. DOI PubMed
25. Zhao Z, Cheng X, Sun X, Ma S, Feng H, Zhao L. Prediction model of anastomotic leakage among esophageal cancer patients after
receiving an esophagectomy: machine learning approach. JMIR Med Inform. 2021;9:e27110. DOI PubMed PMC
26. van de Beld JJ, Crull D, Mikhal J, et al. Complication prediction after esophagectomy with machine learning. Diagnostics.
2024;14:439. DOI PubMed PMC
27. Bolourani S, Tayebi MA, Diao L, et al. Using machine learning to predict early readmission following esophagectomy. J Thorac
Cardiovasc Surg. 2021;161:1926-39.e8. DOI PubMed
28. Jung JO, Pisula JI, Bozek K, et al. Prediction of postoperative complications after oesophagectomy using machine-learning methods.
Br J Surg. 2023;110:1361-6. DOI PubMed

