Page 35 - Read Online
P. 35

Poulos et al. Mini-invasive Surg. 2025;9:6  https://dx.doi.org/10.20517/2574-1225.2024.42  Page 5 of 6

               Authors’ contributions
               Conceived the idea: Schumacher L, Holzwanger E
               Performed the literature search and organized results: Poulos CM, Cassidy R, Khatibifar E
               All authors discussed and contributed to the final manuscript.

               Availability of data and materials
               Not applicable.

               Financial support and sponsorship
               None.

               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2025.


               REFERENCES
               1.       Bellini V, Valente M, Del Rio P, Bignami E. Artificial intelligence in thoracic surgery: a narrative review. J Thorac Dis.
                   2021;13:6963-75.  DOI  PubMed  PMC
               2.       Seastedt KP, Moukheiber D, Mahindre SA, et al. A scoping review of artificial intelligence applications in thoracic surgery. Eur J
                   Cardiothorac Surg. 2022;61:239-48.  DOI  PubMed  PMC
               3.       Zhang YH, Guo LJ, Yuan XL, Hu B. Artificial intelligence-assisted esophageal cancer management: now and future. World J
                   Gastroenterol. 2020;26:5256-71.  DOI  PubMed  PMC
               4.       Kröner PT, Engels MM, Glicksberg BS, et al. Artificial intelligence in gastroenterology: a state-of-the-art review. World J
                   Gastroenterol. 2021;27:6794-824.  DOI  PubMed  PMC
               5.       Patel A, Arora GS, Roknsharifi M, Kaur P, Javed H. Artificial intelligence in the detection of Barrett’s esophagus: a systematic review.
                   Cureus. 2023;15:e47755.  DOI  PubMed  PMC
               6.       Meinikheim M, Messmann H, Ebigbo A. Role of artificial intelligence in diagnosing Barrett’s esophagus-related neoplasia. Clin
                   Endosc. 2023;56:14-22.  DOI  PubMed  PMC
               7.       de Groof J, van der Sommen F, van der Putten J, et al. The Argos project: the development of a computer-aided detection system to
                   improve detection of Barrett’s neoplasia on white light endoscopy. United European Gastroenterol J. 2019;7:538-47.  DOI  PubMed
                   PMC
               8.       Fockens KN, Jukema JB, Boers T, et al. Towards a robust and compact deep learning system for primary detection of early Barrett’s
                   neoplasia: initial image-based results of training on a multi-center retrospectively collected data set. United European Gastroenterol J.
                   2023;11:324-36.  DOI  PubMed  PMC
               9.       Abdelrahim M, Saiko M, Maeda N, et al. Development and validation of artificial neural networks model for detection of Barrett’s
                   neoplasia: a multicenter pragmatic nonrandomized trial (with video). Gastrointest Endosc. 2023;97:422-34.  DOI  PubMed
               10.      Hussein M, González-Bueno Puyal J, Lines D, et al. A new artificial intelligence system successfully detects and localises early
                   neoplasia in Barrett’s esophagus by using convolutional neural networks. United European Gastroenterol J. 2022;10:528-37.  DOI
                   PubMed  PMC
               11.      Faghani S, Codipilly DC, David Vogelsang, et al. Development of a deep learning model for the histologic diagnosis of dysplasia in
                   Barrett’s esophagus. Gastrointest Endosc. 2022;96:918-25.e3.  DOI  PubMed
               12.      Guleria S, Shah TU, Pulido JV, et al. Deep learning systems detect dysplasia with human-like accuracy using histopathology and
                   probe-based confocal laser endomicroscopy. Sci Rep. 2021;11:5086.  DOI  PubMed  PMC
               13.      Iwagami H, Ishihara R, Aoyama K, et al. Artificial intelligence for the detection of esophageal and esophagogastric junctional
                   adenocarcinoma. J Gastroenterol Hepatol. 2021;36:131-6.  DOI  PubMed
               14.      Wu L, Zhang J, Zhou W, et al. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind
   30   31   32   33   34   35   36   37   38   39   40