Page 35 - Read Online
P. 35
Poulos et al. Mini-invasive Surg. 2025;9:6 https://dx.doi.org/10.20517/2574-1225.2024.42 Page 5 of 6
Authors’ contributions
Conceived the idea: Schumacher L, Holzwanger E
Performed the literature search and organized results: Poulos CM, Cassidy R, Khatibifar E
All authors discussed and contributed to the final manuscript.
Availability of data and materials
Not applicable.
Financial support and sponsorship
None.
Conflicts of interest
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2025.
REFERENCES
1. Bellini V, Valente M, Del Rio P, Bignami E. Artificial intelligence in thoracic surgery: a narrative review. J Thorac Dis.
2021;13:6963-75. DOI PubMed PMC
2. Seastedt KP, Moukheiber D, Mahindre SA, et al. A scoping review of artificial intelligence applications in thoracic surgery. Eur J
Cardiothorac Surg. 2022;61:239-48. DOI PubMed PMC
3. Zhang YH, Guo LJ, Yuan XL, Hu B. Artificial intelligence-assisted esophageal cancer management: now and future. World J
Gastroenterol. 2020;26:5256-71. DOI PubMed PMC
4. Kröner PT, Engels MM, Glicksberg BS, et al. Artificial intelligence in gastroenterology: a state-of-the-art review. World J
Gastroenterol. 2021;27:6794-824. DOI PubMed PMC
5. Patel A, Arora GS, Roknsharifi M, Kaur P, Javed H. Artificial intelligence in the detection of Barrett’s esophagus: a systematic review.
Cureus. 2023;15:e47755. DOI PubMed PMC
6. Meinikheim M, Messmann H, Ebigbo A. Role of artificial intelligence in diagnosing Barrett’s esophagus-related neoplasia. Clin
Endosc. 2023;56:14-22. DOI PubMed PMC
7. de Groof J, van der Sommen F, van der Putten J, et al. The Argos project: the development of a computer-aided detection system to
improve detection of Barrett’s neoplasia on white light endoscopy. United European Gastroenterol J. 2019;7:538-47. DOI PubMed
PMC
8. Fockens KN, Jukema JB, Boers T, et al. Towards a robust and compact deep learning system for primary detection of early Barrett’s
neoplasia: initial image-based results of training on a multi-center retrospectively collected data set. United European Gastroenterol J.
2023;11:324-36. DOI PubMed PMC
9. Abdelrahim M, Saiko M, Maeda N, et al. Development and validation of artificial neural networks model for detection of Barrett’s
neoplasia: a multicenter pragmatic nonrandomized trial (with video). Gastrointest Endosc. 2023;97:422-34. DOI PubMed
10. Hussein M, González-Bueno Puyal J, Lines D, et al. A new artificial intelligence system successfully detects and localises early
neoplasia in Barrett’s esophagus by using convolutional neural networks. United European Gastroenterol J. 2022;10:528-37. DOI
PubMed PMC
11. Faghani S, Codipilly DC, David Vogelsang, et al. Development of a deep learning model for the histologic diagnosis of dysplasia in
Barrett’s esophagus. Gastrointest Endosc. 2022;96:918-25.e3. DOI PubMed
12. Guleria S, Shah TU, Pulido JV, et al. Deep learning systems detect dysplasia with human-like accuracy using histopathology and
probe-based confocal laser endomicroscopy. Sci Rep. 2021;11:5086. DOI PubMed PMC
13. Iwagami H, Ishihara R, Aoyama K, et al. Artificial intelligence for the detection of esophageal and esophagogastric junctional
adenocarcinoma. J Gastroenterol Hepatol. 2021;36:131-6. DOI PubMed
14. Wu L, Zhang J, Zhou W, et al. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind

