Page 66 - Read Online
P. 66
Riachi et al. Mini-invasive Surg 2023;7:14 https://dx.doi.org/10.20517/2574-1225.2022.120 Page 11 of 11
systematic review. Int J Surg 2022;101:106633. DOI PubMed
76. Asbun HJ, Moekotte AL, Vissers FL, et al. The miami international evidence-based guidelines on minimally invasive pancreas
resection. Ann Surg 2020;271:1-14. DOI
77. Jin J, Shi Y, Chen M, et al. Robotic versus open pancreatoduodenectomy for pancreatic and periampullary tumors (PORTAL): a study
protocol for a multicenter phase III non-inferiority randomized controlled trial. Trials 2021;22:954. DOI PubMed PMC
78. Turchetti G, Palla I, Pierotti F, Cuschieri A. Economic evaluation of da Vinci-assisted robotic surgery: a systematic review. Surg
Endosc 2012;26:598-606. DOI PubMed
79. Baker EH, Ross SW, Seshadri R, et al. Robotic pancreaticoduodenectomy: comparison of complications and cost to the open approach.
Int J Med Robot 2016;12:554-60. DOI
80. Rosemurgy A, Ross S, Bourdeau T, et al. Cost analysis of pancreaticoduodenectomy at a high-volume robotic hepatopancreaticobiliary
surgery program. J Am Coll Surg 2021;232:461-9. DOI
81. Benzing C, Timmermann L, Winklmann T, et al. Robotic versus open pancreatic surgery: a propensity score-matched cost-
effectiveness analysis. Langenbecks Arch Surg 2022;407:1923-33. DOI PubMed PMC
82. Hoehn RS, Nassour I, Adam MA, Winters S, Paniccia A, Zureikat AH. National trends in robotic pancreas surgery. J Gastrointest
Surg 2021;25:983-90. DOI PubMed
83. Shi Y, Wang W, Qiu W, et al. Learning curve from 450 cases of robot-assisted pancreaticoduocectomy in a high-volume pancreatic
center: optimization of operative procedure and a retrospective study. Ann Surg 2021;274:e1277-83. DOI
84. Mark Knab L, Zenati MS, Khodakov A, et al. Evolution of a novel robotic training curriculum in a complex general surgical oncology
fellowship. Ann Surg Oncol 2018;25:3445-52. DOI
85. Kaltenmeier C, Nassour I, Hoehn RS, et al. Impact of resection margin status in patients with pancreatic cancer: a national cohort
study. J Gastrointest Surg 2021;25:2307-16. DOI PubMed PMC
86. George EI, Brand TC, LaPorta A, Marescaux J, Satava RM. Origins of robotic surgery: from skepticism to standard of care. JSLS
2018:22. DOI PubMed PMC
87. Hashimoto DA, Ward TM, Meireles OR. The role of artificial intelligence in surgery. Adv Surg 2020;54:89-101. DOI
88. Rimmer L, Howard C, Picca L, Bashir M. The automaton as a surgeon: the future of artificial intelligence in emergency and general
surgery. Eur J Trauma Emerg Surg 2021;47:757-62. DOI PubMed
89. Kawka M, Gall TM, Fang C, Liu R, Jiao LR. Intraoperative video analysis and machine learning models will change the future of
surgical training. Intell Surg 2022;1:13-5. DOI
90. Saeidi H, Opfermann JD, Kam M, et al. Autonomous robotic laparoscopic surgery for intestinal anastomosis. Sci Robot
2022;7:eabj2908. DOI PubMed PMC
91. Opfermann JD, Leonard S, Decker RS, et al. Semi-autonomous electrosurgery for tumor resection using a multi-degree of freedom
electrosurgical tool and visual servoing. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2017
Sep 24-28. Vancouver, BC, Canada. p. 3653-60. DOI
92. Phutane P, Buc E, Poirot K, et al. Preliminary trial of augmented reality performed on a laparoscopic left hepatectomy. Surg Endosc
2018;32:514-5. DOI
93. Onda S, Okamoto T, Kanehira M, et al. Identification of inferior pancreaticoduodenal artery during pancreaticoduodenectomy using
augmented reality-based navigation system. J Hepatobiliary Pancreat Sci 2014;21:281-7. DOI
94. Tang R, Yang W, Hou Y, et al. Augmented reality-assisted pancreaticoduodenectomy with superior mesenteric vein resection and
reconstruction. Gastroenterol Res Pract 2021;2021:9621323. DOI PubMed PMC