Page 19 - Read Online
P. 19

Page 263                  Saleh et al. J Transl Genet Genom 2021;5:250-64  https://dx.doi.org/10.20517/jtgg.2021.23

               6.       Müller PL, Birtel J, Herrmann P, Holz FG, Charbel Issa P, Gliem M. Functional relevance and structural correlates of near infrared and
                   short wavelength fundus autofluorescence imaging in ABCA4-related retinopathy. Transl Vis Sci Technol 2019;8:46.  DOI  PubMed
                   PMC
               7.       Greenstein VC, Schuman AD, Lee W, et al. Near-infrared autofluorescence: its relationship to short-wavelength autofluorescence and
                   optical coherence tomography in recessive stargardt disease. Invest Ophthalmol Vis Sci 2015;56:3226-34.  DOI  PubMed  PMC
               8.       Duncker T, Marsiglia M, Lee W, et al. Correlations among near-infrared and short-wavelength autofluorescence and spectral-domain
                   optical coherence tomography in recessive Stargardt disease. Invest Ophthalmol Vis Sci 2014;55:8134-43.  DOI  PubMed  PMC
               9.       Hoseini-Yazdi H, Vincent SJ, Collins MJ, Read SA, Alonso-Caneiro D. Repeatability of wide-field choroidal thickness measurements
                   using enhanced-depth imaging optical coherence tomography. Clin Exp Optom 2019;102:327-34.  DOI  PubMed
               10.      Hondur G, Göktaş E, Al-Aswad L, Tezel G. Age-related changes in the peripheral retinal nerve fiber layer thickness. Clin Ophthalmol
                   2018;12:401-9.  DOI  PubMed  PMC
               11.      Hoseini-Yazdi H, Vincent SJ, Collins MJ, Read SA, Alonso-Caneiro D. Wide-field choroidal thickness in myopes and emmetropes.
                   Sci Rep 2019;9:3474.  DOI  PubMed  PMC
               12.      Kakiuchi N, Terasaki H, Sonoda S, et al. Regional differences of choroidal structure determined by wide-field optical coherence
                   tomography. Invest Ophthalmol Vis Sci 2019;60:2614-22.  DOI  PubMed
               13.      Kim MS, Lim HB, Lee WH, Kim KM, Nam KY, Kim JY. Wide-field swept-source optical coherence tomography analysis of
                   interocular symmetry of choroidal thickness in healthy young individuals. Invest Ophthalmol Vis Sci 2021;62:5.  DOI  PubMed  PMC
               14.      Lim HB, Kim K, Won YK, Lee WH, Lee MW, Kim JY. A comparison of choroidal thicknesses between pachychoroid and
                   normochoroid eyes acquired from wide-field swept-source OCT. Acta Ophthalmol 2021;99:e117-23.  DOI  PubMed
               15.      Singh SR, Invernizzi A, Rasheed MA, et al. Wide-field individual retinal layer thickness in healthy eyes. Eur J Ophthalmol
                   2020:1120672120927664.  DOI  PubMed
               16.      Singh SR, Invernizzi A, Rasheed MA, et al. Wide-field choroidal vascularity in healthy eyes. Am J Ophthalmol 2018;193:100-5.  DOI
                   PubMed
               17.      Tan O, Liu L, Liu L, Huang D. Nerve fiber flux analysis using wide-field swept-source optical coherence tomography. Transl Vis Sci
                   Technol 2018;7:16.  DOI  PubMed  PMC
               18.      Hood DC, De Cuir N, Blumberg DM, et al. A single wide-field OCT protocol can provide compelling information for the diagnosis of
                   early glaucoma. Transl Vis Sci Technol 2016;5:4.  DOI  PubMed  PMC
               19.      Lee WJ, Kim TJ, Kim YK, Jeoung JW, Park KH. Serial combined wide-field optical coherence tomography maps for detection of
                   early glaucomatous structural progression. JAMA Ophthalmol 2018;136:1121-7.  DOI  PubMed  PMC
               20.      Lee WJ, Oh S, Kim YK, Jeoung JW, Park KH. Comparison of glaucoma-diagnostic ability between wide-field swept-source OCT
                   retinal nerve fiber layer maps and spectral-domain OCT. Eye (Lond) 2018;32:1483-92.  DOI  PubMed  PMC
               21.      Muhammad H, Fuchs TJ, De Cuir N, et al. Hybrid deep learning on single wide-field optical coherence tomography scans accurately
                   classifies glaucoma suspects. J Glaucoma 2017;26:1086-94.  DOI  PubMed  PMC
               22.      Yoshida M, Kunimatsu-Sanuki S, Omodaka K, Nakazawa T. Predicting the integrated visual field with wide-scan optical coherence
                   tomography in glaucoma patients. Curr Eye Res 2018;43:754-61.  DOI  PubMed
               23.      Hirano T, Kakihara S, Toriyama Y, Nittala MG, Murata T, Sadda S. Wide-field en face swept-source optical coherence tomography
                   angiography using extended field imaging in diabetic retinopathy. Br J Ophthalmol 2018;102:1199-203.  DOI  PubMed
               24.      Kim K, In You J, Park JR, Kim ES, Oh WY, Yu SY. Quantification of retinal microvascular parameters by severity of diabetic
                   retinopathy using wide-field swept-source optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 2021.  DOI
                   PubMed
               25.      Munk MR, Lincke J, Giannakaki-Zimmermann H, Ebneter A, Wolf S, Zinkernagel MS. Comparison of 55° wide-field spectral domain
                   optical coherence tomography and conventional 30° optical coherence tomography for the assessment of diabetic macular edema.
                   Ophthalmologica 2017;237:145-52.  DOI  PubMed
               26.      Sawada O, Ichiyama Y, Obata S, et al. Comparison between wide-angle OCT angiography and ultra-wide field fluorescein
                   angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy. Graefes Arch Clin Exp
                   Ophthalmol 2018;256:1275-80.  DOI  PubMed
               27.      Wang M, Garg I, Miller JB. Wide field swept source optical coherence tomography angiography for the evaluation of proliferative
                   diabetic retinopathy and associated lesions: a review. Semin Ophthalmol 2021;36:162-7.  DOI  PubMed
               28.      Singh SR, Invernizzi A, Rasheed MA, et al. Wide-field choroidal vascular analysis in central serous chorioretinopathy. Eur J
                   Ophthalmol 2020:1120672120963456.  DOI  PubMed
               29.      Xiao W, Zhu Z, Odouard C, Xiao O, Guo X, He M. Wide-field en face swept-source optical coherence tomography features of
                   extrafoveal retinoschisis in highly myopic eyes. Invest Ophthalmol Vis Sci 2017;58:1037-44.  DOI  PubMed
               30.      Zheng F, Wong CW, Sabanayagam C, et al. Prevalence, risk factors and impact of posterior staphyloma diagnosed from wide-field
                   optical coherence tomography in Singapore adults with high myopia. Acta Ophthalmol 2021;99:e144-53.  DOI  PubMed
               31.      Greenstein VC, Nunez J, Lee W, et al. A comparison of en face optical coherence tomography and fundus autofluorescence in
                   stargardt disease. Invest Ophthalmol Vis Sci 2017;58:5227-36.  DOI  PubMed  PMC
               32.      Kumar V, Kumawat D, Tewari R, Venkatesh P. Ultra-wide field imaging of pigmented para-venous retino-choroidal atrophy. Eur J
                   Ophthalmol 2019;29:444-52.  DOI  PubMed
               33.      Zhang T, Wang Z, Sun L, et al. Ultra-wide-field scanning laser ophthalmoscopy and optical coherence tomography in FEVR: findings
                   and its diagnostic ability. Br J Ophthalmol 2021;105:995-1001.  DOI  PubMed
               34.      Han IC, Whitmore SS, Critser DB, et al. Wide-field swept-source OCT and angiography in X-linked retinoschisis. Ophthalmol Retina
   14   15   16   17   18   19   20   21   22   23   24