Page 69 - Read Online
P. 69

Feusier et al. J Transl Genet Genom 2021;5:189-99  https://dx.doi.org/10.20517/jtgg.2021.05  Page 199

               37.      Acunzo M, Romano G, Wernicke D, et al. Translocation t(2;11) in CLL cells results in CXCR4/MAML2 fusion oncogene. Blood
                   2014;124:259-62.  DOI  PubMed  PMC
               38.      Redondo-Muñoz J, García-Pardo A, Teixidó J. Molecular players in hematologic tumor cell trafficking. Front Immunol 2019;10:156.
                   DOI  PubMed  PMC
               39.      Kriston C, Plander M, Márk Á, et al. In contrast to high CD49d, low CXCR4 expression indicates the dependency of chronic
                   lymphocytic leukemia (CLL) cells on the microenvironment. Ann Hematol 2018;97:2145-52.  DOI  PubMed
               40.      Hacken E, Burger JA. Microenvironment dependency in Chronic Lymphocytic Leukemia: The basis for new targeted therapies.
                   Pharmacol Ther 2014;144:338-48.  DOI  PubMed
               41.      Pavlasova G, Borsky M, Seda V, et al. Ibrutinib inhibits CD20 upregulation on CLL B cells mediated by the CXCR4/SDF-1 axis.
                   Blood 2016;128:1609-13.  DOI  PubMed  PMC
               42.      Martini V, Gattazzo C, Frezzato F, et al. Cortactin, a Lyn substrate, is a checkpoint molecule at the intersection of BCR and CXCR4
                   signalling pathway in chronic lymphocytic leukaemia cells. Br J Haematol 2017;178:81-93.  DOI  PubMed
               43.      Kashyap MK, Kumar D, Jones H, et al. Ulocuplumab (BMS-936564 / MDX1338): a fully human anti-CXCR4 antibody induces cell
                   death in chronic lymphocytic leukemia mediated through a reactive oxygen species-dependent pathway. Oncotarget 2016;7:2809-22.
                   DOI  PubMed  PMC
               44.      Secchiero P, Voltan R, Rimondi E, et al. The γ-secretase inhibitors enhance the anti-leukemic activity of ibrutinib in B-CLL cells.
                   Oncotarget 2017;8:59235-45.  DOI  PubMed  PMC
               45.      Shaim H, Estrov Z, Harris D, et al. The CXCR4-STAT3-IL-10 pathway controls the immunoregulatory function of chronic
                   lymphocytic leukemia and is modulated by lenalidomide. Front Immunol 2017;8:1773.  DOI  PubMed  PMC
               46.      Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenström's macroglobulinemia. N Engl J Med 2015;372:1430-
                   40.  DOI  PubMed
               47.      Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. In: Pomper MG, Fisher PB, editors. Emerging
                   applications of molecular imaging to oncology. Amsterdam: Elsevier; 2014. p. 31-82.
               48.      Scala S. Molecular pathways: targeting the CXCR4-CXCL12 axis--untapped potential in the tumor microenvironment. Clin Cancer
                   Res 2015;21:4278-85.  DOI  PubMed
               49.      Lee Y, Yoon KA, Joo J, et al. Prognostic implications of genetic variants in advanced non-small cell lung cancer: a genome-wide
                   association study. Carcinogenesis 2013;34:307-13.  DOI  PubMed
               50.      Enjuanes A, Benavente Y, Bosch F, et al. Genetic variants in apoptosis and immunoregulation-related genes are associated with risk of
                   chronic lymphocytic leukemia. Cancer Res 2008;68:10178-86.  DOI  PubMed
               51.      Crowther-Swanepoel D, Qureshi M, Dyer MJ, et al. Genetic variation in CXCR4 and risk of chronic lymphocytic leukemia. Blood
                   2009;114:4843-6.  DOI  PubMed
               52.      Milanesi  S,  Locati  M,  Borroni  EM.  Aberrant  CXCR4  signaling  at  crossroad  of  WHIM  syndrome  and  Waldenstrom's
                   macroglobulinemia. Int J Mol Sci 2020;21:5696.  DOI  PubMed  PMC
               53.      Tiao G, Improgo MR, Tausch E, et al. Analysis of ITGB2 rare germ line variants in chronic lymphocytic leukemia. Blood
                   2017;130:2443-4.  DOI  PubMed  PMC
   64   65   66   67   68   69   70   71   72   73   74