Page 68 - Read Online
P. 68

Page 198                Feusier et al. J Transl Genet Genom 2021;5:189-99  https://dx.doi.org/10.20517/jtgg.2021.05

                   2003;121:866-73.  DOI  PubMed
               6.       Sellick GS, Webb EL, Allinson R, et al. A high-density SNP genomewide linkage scan for chronic lymphocytic leukemia-
                   susceptibility loci. Am J Hum Genet 2005;77:420-9.  DOI  PubMed  PMC
               7.       Sellick GS, Goldin LR, Wild RW, et al. A high-density SNP genome-wide linkage search of 206 families identifies susceptibility loci
                   for chronic lymphocytic leukemia. Blood 2007;110:3326-33.  DOI  PubMed  PMC
               8.       Raval A, Tanner SM, Byrd JC, et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia.
                   Cell 2007;129:879-90.  DOI  PubMed  PMC
               9.       Fuller SJ, Papaemmanuil E, McKinnon L, et al. Analysis of a large multi-generational family provides insight into the genetics of
                   chronic lymphocytic leukemia. Br J Haematol 2008;142:238-45.  DOI  PubMed
               10.      Goldin LR, McMaster ML, Rotunno M, et al. Whole exome sequencing in families with CLL detects a variant in Integrin β 2
                   associated with disease susceptibility. Blood 2016;128:2261-3.  DOI  PubMed  PMC
               11.      Speedy HE, Kinnersley B, Chubb D, et al. Germ line mutations in shelterin complex genes are associated with familial chronic
                   lymphocytic leukemia. Blood 2016;128:2319-26.  DOI  PubMed  PMC
               12.      Blackburn NB, Marthick JR, Banks A, et al. Evaluating a CLL susceptibility variant in ITGB2 in families with multiple subtypes of
                   hematological malignancies. Blood 2017;130:86-8.  DOI  PubMed  PMC
               13.      Brown JR, Hanna M, Tesar B, et al. Germline copy number variation associated with Mendelian inheritance of CLL in two families.
                   Leukemia 2012;26:1710-3.  DOI  PubMed
               14.      Hanson HA, Leiser CL, Madsen MJ, et al. Family study designs informed by tumor heterogeneity and multi-cancer pleiotropies: the
                   power of the Utah Population Database. Cancer Epidemiol Biomarkers Prev 2020;29:807-15.  DOI  PubMed  PMC
               15.      Waller RG, Darlington TM, Wei X, et al. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple
                   myeloma risk. PLoS Genet 2018;14:e1007111.  DOI  PubMed  PMC
               16.      Glenn MJ, Madsen MJ, Davis E, et al. Elevated IgM and abnormal free light chain ratio are increased in relatives from high-risk
                   chronic lymphocytic leukemia pedigrees. Blood Cancer J 2019;9:25.  DOI  PubMed  PMC
               17.      Knight S, Abo RP, Abel HJ, et al. Shared genomic segment analysis: the power to find rare disease variants. Ann Hum Genet
                   2012;76:500-9.  DOI  PubMed  PMC
               18.      Auton A, Brooks LD, Durbin RM; The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature
                   2015;526:68-74.  DOI  PubMed  PMC
               19.      Purcell S, Chang C. PLINK 1.9. Available from: https://www.cog-genomics.org/plink/1.9/. [Last accessed on 21 May 2021].
               20.      Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and
                   richer datasets. Gigascience 2015;4:7.  DOI  PubMed  PMC
               21.      Wigginton JE, Cutler DJ, Abecasis GR. A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet 2005;76:887-93.  DOI
                   PubMed  PMC
               22.      Graffelman J, Moreno V. The mid p-value in exact tests for Hardy-Weinberg equilibrium. Stat Appl Genet Mol Biol 2013;12:433-48.
                   DOI  PubMed
               23.      Thomas A, Camp NJ, Farnham JM, Allen-Brady K, Cannon-Albright LA. Shared genomic segment analysis. Mapping disease
                   predisposition genes in extended pedigrees using SNP genotype assays. Ann Hum Genet 2008;72:279-87.  DOI  PubMed  PMC
               24.      Matise TC, Chen F, Chen W, et al. A second-generation combined linkage physical map of the human genome. Genome Res
                   2007;17:1783-6.  DOI  PubMed  PMC
               25.      Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet
                   1995;11:241-7.  DOI  PubMed
               26.      Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science 2015;347:1260419.  DOI
                   PubMed
               27.      Thul PJ, Åkesson L, Wiking M, et al. A subcellular map of the human proteome. Science 2017;356:eaal3321.  DOI  PubMed
               28.      The Human Protein Atlas. Available from: https://www.proteinatlas.org/. [Last accessed 21 May 2021].
               29.      Assays and annotation - The Human Protein Atlas. Available from: https://www.proteinatlas.org/about/assays+annotation#hpa_rna.
                   [Last accessed 21 May 2021].
               30.      Möhle R, Failenschmid C, Bautz F, Kanz L. Overexpression of the chemokine receptor CXCR4 in B cell chronic lymphocytic
                   leukemia is associated with increased functional response to stromal cell-derived factor-1 (SDF-1). Leukemia 1999;13:1954-9.  DOI
                   PubMed
               31.      Burger JA, Kipps TJ. Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells.
                   Leuk Lymphoma 2002;43:461-6.  DOI  PubMed
               32.      Schmidt J, Federmann B, Schindler N, et al. MYD88 L265P and CXCR4 mutations in lymphoplasmacytic lymphoma identify cases
                   with high disease activity. Br J Haematol 2015;169:795-803.  DOI  PubMed
               33.      Ghobrial IM, Bone ND, Stenson MJ, et al. Expression of the chemokine receptors CXCR4 and CCR7 and disease progression in B-cell
                   chronic lymphocytic leukemia/ small lymphocytic lymphoma. Mayo Clin Proc 2004;79:318-25.  DOI  PubMed
               34.      Ganghammer S, Gutjahr J, Hutterer E, et al. Combined CXCR3/CXCR4 measurements are of high prognostic value in chronic
                   lymphocytic leukemia due to negative co-operativity of the receptors. Haematologica 2016;101:e99-102.  DOI  PubMed  PMC
               35.      Ishibe N, Albitar M, Jilani IB, Goldin LR, Marti GE, Caporaso NE. CXCR4 expression is associated with survival in familial chronic
                   lymphocytic leukemia, but CD38 expression is not. Blood 2002;100:1100-1.  DOI  PubMed
               36.      Puente XS, Beà S, Valdés-Mas R, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 2015;526:519-24.
                   DOI  PubMed
   63   64   65   66   67   68   69   70   71   72   73