Page 68 - Read Online
P. 68
Page 198 Feusier et al. J Transl Genet Genom 2021;5:189-99 https://dx.doi.org/10.20517/jtgg.2021.05
2003;121:866-73. DOI PubMed
6. Sellick GS, Webb EL, Allinson R, et al. A high-density SNP genomewide linkage scan for chronic lymphocytic leukemia-
susceptibility loci. Am J Hum Genet 2005;77:420-9. DOI PubMed PMC
7. Sellick GS, Goldin LR, Wild RW, et al. A high-density SNP genome-wide linkage search of 206 families identifies susceptibility loci
for chronic lymphocytic leukemia. Blood 2007;110:3326-33. DOI PubMed PMC
8. Raval A, Tanner SM, Byrd JC, et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia.
Cell 2007;129:879-90. DOI PubMed PMC
9. Fuller SJ, Papaemmanuil E, McKinnon L, et al. Analysis of a large multi-generational family provides insight into the genetics of
chronic lymphocytic leukemia. Br J Haematol 2008;142:238-45. DOI PubMed
10. Goldin LR, McMaster ML, Rotunno M, et al. Whole exome sequencing in families with CLL detects a variant in Integrin β 2
associated with disease susceptibility. Blood 2016;128:2261-3. DOI PubMed PMC
11. Speedy HE, Kinnersley B, Chubb D, et al. Germ line mutations in shelterin complex genes are associated with familial chronic
lymphocytic leukemia. Blood 2016;128:2319-26. DOI PubMed PMC
12. Blackburn NB, Marthick JR, Banks A, et al. Evaluating a CLL susceptibility variant in ITGB2 in families with multiple subtypes of
hematological malignancies. Blood 2017;130:86-8. DOI PubMed PMC
13. Brown JR, Hanna M, Tesar B, et al. Germline copy number variation associated with Mendelian inheritance of CLL in two families.
Leukemia 2012;26:1710-3. DOI PubMed
14. Hanson HA, Leiser CL, Madsen MJ, et al. Family study designs informed by tumor heterogeneity and multi-cancer pleiotropies: the
power of the Utah Population Database. Cancer Epidemiol Biomarkers Prev 2020;29:807-15. DOI PubMed PMC
15. Waller RG, Darlington TM, Wei X, et al. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple
myeloma risk. PLoS Genet 2018;14:e1007111. DOI PubMed PMC
16. Glenn MJ, Madsen MJ, Davis E, et al. Elevated IgM and abnormal free light chain ratio are increased in relatives from high-risk
chronic lymphocytic leukemia pedigrees. Blood Cancer J 2019;9:25. DOI PubMed PMC
17. Knight S, Abo RP, Abel HJ, et al. Shared genomic segment analysis: the power to find rare disease variants. Ann Hum Genet
2012;76:500-9. DOI PubMed PMC
18. Auton A, Brooks LD, Durbin RM; The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature
2015;526:68-74. DOI PubMed PMC
19. Purcell S, Chang C. PLINK 1.9. Available from: https://www.cog-genomics.org/plink/1.9/. [Last accessed on 21 May 2021].
20. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and
richer datasets. Gigascience 2015;4:7. DOI PubMed PMC
21. Wigginton JE, Cutler DJ, Abecasis GR. A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet 2005;76:887-93. DOI
PubMed PMC
22. Graffelman J, Moreno V. The mid p-value in exact tests for Hardy-Weinberg equilibrium. Stat Appl Genet Mol Biol 2013;12:433-48.
DOI PubMed
23. Thomas A, Camp NJ, Farnham JM, Allen-Brady K, Cannon-Albright LA. Shared genomic segment analysis. Mapping disease
predisposition genes in extended pedigrees using SNP genotype assays. Ann Hum Genet 2008;72:279-87. DOI PubMed PMC
24. Matise TC, Chen F, Chen W, et al. A second-generation combined linkage physical map of the human genome. Genome Res
2007;17:1783-6. DOI PubMed PMC
25. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet
1995;11:241-7. DOI PubMed
26. Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science 2015;347:1260419. DOI
PubMed
27. Thul PJ, Åkesson L, Wiking M, et al. A subcellular map of the human proteome. Science 2017;356:eaal3321. DOI PubMed
28. The Human Protein Atlas. Available from: https://www.proteinatlas.org/. [Last accessed 21 May 2021].
29. Assays and annotation - The Human Protein Atlas. Available from: https://www.proteinatlas.org/about/assays+annotation#hpa_rna.
[Last accessed 21 May 2021].
30. Möhle R, Failenschmid C, Bautz F, Kanz L. Overexpression of the chemokine receptor CXCR4 in B cell chronic lymphocytic
leukemia is associated with increased functional response to stromal cell-derived factor-1 (SDF-1). Leukemia 1999;13:1954-9. DOI
PubMed
31. Burger JA, Kipps TJ. Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells.
Leuk Lymphoma 2002;43:461-6. DOI PubMed
32. Schmidt J, Federmann B, Schindler N, et al. MYD88 L265P and CXCR4 mutations in lymphoplasmacytic lymphoma identify cases
with high disease activity. Br J Haematol 2015;169:795-803. DOI PubMed
33. Ghobrial IM, Bone ND, Stenson MJ, et al. Expression of the chemokine receptors CXCR4 and CCR7 and disease progression in B-cell
chronic lymphocytic leukemia/ small lymphocytic lymphoma. Mayo Clin Proc 2004;79:318-25. DOI PubMed
34. Ganghammer S, Gutjahr J, Hutterer E, et al. Combined CXCR3/CXCR4 measurements are of high prognostic value in chronic
lymphocytic leukemia due to negative co-operativity of the receptors. Haematologica 2016;101:e99-102. DOI PubMed PMC
35. Ishibe N, Albitar M, Jilani IB, Goldin LR, Marti GE, Caporaso NE. CXCR4 expression is associated with survival in familial chronic
lymphocytic leukemia, but CD38 expression is not. Blood 2002;100:1100-1. DOI PubMed
36. Puente XS, Beà S, Valdés-Mas R, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 2015;526:519-24.
DOI PubMed