Page 26 - Read Online
P. 26

Page 12 of 12                                        van der Ent et al. J Transl Genet Genom 2018;2:10. I  https://doi.org/10.20517/jtgg.2018.09

                   tumour progression. J Pathol 2011;223:347-57.
               119.  A Phase I Study of NK Cell Infusion Following Allogeneic Peripheral Blood Stem Cell Transplantation From Related or Matched Unrelated
                   Donors in Pediatric Patients With Solid Tumors and Leukemias. ClinicalTrials.gov Identifier: NCT01287104. Available from: https://
                   clinicaltrials.gov/ct2/show/NCT01287104 [Last accessed on 23 May 2018].
               120.  Pilot Study of Expanded, Activated Haploidentical Natural Killer Cell Infusions for Sarcomas. ClinicalTrials.gov Identifier: NCT02409576.
                   Available from: https://clinicaltrials.gov/ct2/show/NCT02409576 [Last accessed on 23 May 2018].
               121.  Phase 2 STIR Trial: Haploidentical Transplant and Donor Natural Killer Cells for Solid Tumors. ClinicalTrials.gov Identifier:
                   NCT02100891. Available from: https://clinicaltrials.gov/ct2/show/NCT02100891 [Last accessed on 23 May 2018].
               122.  Haploidentical Stem Cell Transplantation and NK Cell Therapy in Patients With High-risk Solid Tumors. ClinicalTrials.gov Identifier:
                   NCT01807468. Available from: https://clinicaltrials.gov/ct2/show/NCT01807468 [Last accessed on 23 May 2018].
               123.  Berghuis D, Schilham MW, Vos HI, Santos SJ, Kloess S, Buddingh’ EP, Egeler RM, Hogendoorn PC, Lankester AC. Histone deacetylase
                   inhibitors enhance expression of NKG2D ligands in Ewing sarcoma and sensitize for natural killer cell-mediated cytolysis. Clin Sarcoma
                   Res 2012;2:8.
               124.  Goodison S, Urquidi V. The cancer testis antigen PRAME as a biomarker for solid tumor cancer management. Biomark Med 2012;6:629-
                   32.
               125.  Osterhoff C, Ivell R, Kirchhoff C. Cloning of a human epididymis-specific mRNA, HE6, encoding a novel member of the seven
                   transmembrane-domain receptor superfamily. DNA Cell Biol 1997;16:379-89.
               126.  Moreaux J, Kassambara A, Hose D, Klein B. STEAP1 is overexpressed in cancers: a promising therapeutic target. Biochem Biophys Res
                   Commun 2012;429:148-55.
               127.  Evans CH, Liu F, Porter RM, O’Sullivan RP, Merghoub T, Lunsford EP, Robichaud K, Van Valen F, Lessnick SL, Gebhardt MC, Wells JW.
                   EWS-FLI-1-targeted cytotoxic T-cell killing of multiple tumor types belonging to the Ewing sarcoma family of tumors. Clin Cancer Res
                   2012;18:5341-51.
               128.  Berghuis D, de Hooge AS, Santos SJ, Horst D, Wiertz EJ, van Eggermond MC, van den Elsen PJ, Taminiau AH, Ottaviano L, Schaefer KL,
                   Dirksen U, Hooijberg E, Mulder A, Melief CJ, Egeler RM, Schilham MW, Jordanova ES, Hogendoorn PC, Lankester AC. Reduced human
                   leukocyte antigen expression in advanced-stage Ewing sarcoma: implications for immune recognition. J Pathol 2009;218:222-31.
               129.  Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, Sauter C, Wang Y, Santomasso B, Mead E, Roshal M, Maslak P, Davila M,
                   Brentjens RJ, Sadelain M. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 2018;378:449-59.
               130.  Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, Timmerman
                   JM, Stiff PJ, Friedberg JW, Flinn IW, Goy A, Hill BT, Smith MR, Deol A, Farooq U, McSweeney P, Munoz J, Avivi I, Castro JE, Westin
                   JR, Chavez JC, Ghobadi A, Komanduri KV, Levy R, Jacobsen ED, Witzig TE, Reagan P, Bot A, Rossi J, Navale L, Jiang Y, Aycock J,
                   Elias M, Chang D, Wiezorek J, Go WY. Axicabtagene ciloleucel CAR T-cell therapy in refractory large b-cell lymphoma. N Engl J Med
                   2017;377:2531-44.
               131.  Kailayangiri S, Altvater B, Meltzer J, Pscherer S, Luecke A, Dierkes C, Titze U, Leuchte K, Landmeier S, Hotfilder M, Dirksen U, Hardes
                   J, Gosheger G, Juergens H, Rossig C. The ganglioside antigen G(D2) is surface-expressed in Ewing sarcoma and allows for MHC-
                   independent immune targeting. Br J Cancer 2012;106:1123-33.
               132.  Safety and Efficacy Evaluation of 4th Generation Safety-engineered CAR T Cells Targeting Sarcomas. ClinicalTrials.gov Identifier:
                   NCT03356782. Available from: https://clinicaltrials.gov/ct2/show/NCT03356782 [Last accessed on 23 May 2018].
               133.  Town J, Pais H, Harrison S, Stead LF, Bataille C, Bunjobpol W, Zhang J, Rabbitts TH. Exploring the surfaceome of Ewing sarcoma
                   identifies a new and unique therapeutic target. Proc Natl Acad Sci U S A 2016;113:3603-8.
               134.  Ghisoli M, Barve MA, Schneider R, Mennel RG, Lenarsky C, Wallraven G, Kumar P, Nemunaitis D, Roth A, Senzer NN, Fletcher FA,
                   Nemunaitis JJ. Pilot trial of vigil immunotherapy in Ewing’s sarcoma. J Clin Oncol 2015;33 suppl 15:abstr10522.
               135.  Trial of Bi-shRNA-furin and Granulocyte Macrophage Colony Stimulating Factor (GMCSF) Augmented Autologous Tumor Cell Vaccine
                   for Advanced Cancer. ClinicalTrials.gov Identifier: NCT01061840. Available from: https://clinicaltrials.gov/ct2/show/NCT01061840. [Last
                   accessed on 23 May 2018].
               136.  Vaccine Therapy and Interleukin-2 in Treating Young Patients With Relapsed or Refractory Ewing’s Sarcoma or Neuroblastoma.
                   ClinicalTrials.gov Identifier: NCT00101309. Available from: https://clinicaltrials.gov/ct2/show/NCT00101309. [Last accessed on 23 May
                   2018].
               137.  A Two-part Phase IIb Trial of Vigil in Ewing’s Sarcoma. ClinicalTrials.gov Identifier: NCT02511132. Available from: https://clinicaltrials.
                   gov/ct2/show/NCT02511132. [Last accessed on 23 May 2018].
               138.  Vakkila J, Jaffe R, Michelow M, Lotze MT. Pediatric cancers are infiltrated predominantly by macrophages and contain a paucity of
                   dendritic cells: a major nosologic difference with adult tumors. Clin Cancer Res 2006;12:2049-54.
               139.  Long AH, Highfill SL, Cui Y, Smith JP, Walker AJ, Ramakrishna S, El-Etriby R, Galli S, Tsokos MG, Orentas RJ, Mackall CL. Reduction
                   of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol Res 2016;4:869-80.
   21   22   23   24   25   26   27   28   29   30   31