Page 24 - Read Online
P. 24

Page 10 of 12                                        van der Ent et al. J Transl Genet Genom 2018;2:10. I  https://doi.org/10.20517/jtgg.2018.09

                   Ewing sarcoma. Cancer 2000;89:793-9.
               69.  Maitra A, Roberts H, Weinberg AG, Geradts J. Aberrant expression of tumor suppressor proteins in the Ewing family of tumors. Arch Pathol
                   Lab Med 2001;125:1207-12.
               70.  Brownhill SC, Taylor C, Burchill SA. Chromosome 9p21 gene copy number and prognostic significance of p16 in ESFT. Br J Cancer
                   2007;96:1914-23.
               71.  Honoki K, Stojanovski E, McEvoy M, Fujii H, Tsujiuchi T, Kido A, Takakura Y, Attia J. Prognostic significance of p16 INK4a alteration for
                   Ewing sarcoma: a meta-analysis. Cancer 2007;110:1351-60.
               72.  Lerman DM, Monument MJ, McIlvaine E, Liu XQ, Huang D, Monovich L, Beeler N, Gorlick RG, Marina NM, Womer RB, Bridge JA,
                   Krailo MD, Randall RL, Lessnick SL; Children’s Oncology Group Ewing Sarcoma Biology Committee. Tumoral TP53 and/or CDKN2A
                   alterations are not reliable prognostic biomarkers in patients with localized Ewing sarcoma: a report from the Children’s Oncology Group.
                   Pediatr Blood Cancer 2015;62:759-65.
               73.  Huang HY, Illei PB, Zhao Z, Mazumdar M, Huvos AG, Healey JH, Wexler LH, Gorlick R, Meyers P, Ladanyi M. Ewing sarcomas with p53
                   mutation or p16/p14ARF homozygous deletion: a highly lethal subset associated with poor chemoresponse. J Clin Oncol 2005;23:548-58.
               74.  Solomon DA, Kim T, Diaz-Martinez LA, Fair J, Elkahloun AG, Harris BT, Toretsky JA, Rosenberg SA, Shukla N, Ladanyi M, Samuels Y,
                   James CD, Yu H, Kim JS, Waldman T. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 2011;333:1039-43.
               75.  Solomon DA, Kim JS, Waldman T. Cohesin gene mutations in tumorigenesis: from discovery to clinical significance. BMB Rep
                   2014;47:299-310.
               76.  Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G. Discovery
                   and saturation analysis of cancer genes across 21 tumor types. Nature 2014;505:495-501.
               77.  Mazumdar C, Shen Y, Xavy S, Zhao F, Reinisch A, Li R, Corces MR, Flynn RA, Buenrostro JD, Chan SM, Thomas D, Koenig JL, Hong
                   WJ, Chang HY, Majeti R. Leukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic
                   progenitor differentiation. Cell Stem Cell 2015;17:675-88.
               78.  van der Lelij P, Lieb S, Jude J, Wutz G, Santos CP, Falkenberg K, Schlattl A, Ban J, Schwentner R, Hoffmann T, Kovar H, Real FX,
                   Waldman T, Pearson MA, Kraut N, Peters JM, Zuber J, Petronczki M. Synthetic lethality between the cohesin subunits STAG1 and STAG2
                   in diverse cancer contexts. Elife 2017;6:e26980.
               79.  Sheffield NC, Pierron G, Klughammer J, Datlinger P, Schönegger A, Schuster M, Hadler J, Surdez D, Guillemot D, Lapouble E, Freneaux P,
                   Champigneulle J, Bouvier R, Walder D, Ambros IM, Hutter C, Sorz E, Amaral AT, de Álava E, Schallmoser K, Strunk D, Rinner B, Liegl-
                   Atzwanger B, Huppertz B, Leithner A, de Pinieux G, Terrier P, Laurence V, Michon J, Ladenstein R, Holter W, Windhager R, Dirksen U,
                   Ambros PF, Delattre O, Kovar H, Bock C, Tomazou EM. DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma.
                   Nat Med 2017;23:386-95.
               80.  Riggi N, Knoechel B, Gillespie SM, Rheinbay E, Boulay G, Suvà ML, Rossetti NE, Boonseng WE, Oksuz O, Cook EB, Formey A, Patel
                   A, Gymrek M, Thapar V, Deshpande V, Ting DT, Hornicek FJ, Nielsen GP, Stamenkovic I, Aryee MJ, Bernstein BE, Rivera MN. EWS-
                   FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell
                   2014;26:668-81.
               81.  Patel N, Black J, Chen X, Marcondes AM, Grady WM, Lawlor ER, Borinstein SC. DNA methylation and gene expression profiling of
                   Ewing sarcoma primary tumors reveal genes that are potential targets of epigenetic inactivation. Sarcoma 2012;2012:498472.
               82.  Alholle A, Brini AT, Gharanei S, Vaiyapuri S, Arrigoni E, Dallol A, Gentle D, Kishida T, Hiruma T, Avigad S, Grimer R, Maher ER, Latif F.
                   Functional epigenetic approach identifies frequently methylated genes in Ewing sarcoma. Epigenetics 2013;8:1198-204.
               83.  Huertas-Martínez J, Court F, Rello-Varona S, Herrero-Martín D, Almacellas-Rabaiget O, Sáinz-Jaspeado M, Garcia-Monclús S, Lagares-
                   Tena L, Buj R, Hontecillas-Prieto L, Sastre A, Azorin D, Sanjuan X, López-Alemany R, Moran S, Roma J, Gallego S, Mora J, García Del
                   Muro X, Giangrande PH, Peinado MA, Alonso J, de Alava E, Monk D, Esteller M, Tirado OM. DNA methylation profiling identifies PTRF/
                   Cavin-1 as a novel tumor suppressor in Ewing sarcoma when co-expressed with caveolin-1. Cancer Lett 2017;386:196-207.
               84.  Torchia EC, Boyd K, Rehg JE, Qu C, Baker SJ. EWS/FLI-1 induces rapid onset of myeloid/erythroid leukemia in mice. Mol Cell Biol
                   2007;27:7918-34.
               85.  Lin PP, Pandey MK, Jin F, Xiong S, Deavers M, Parant JM, Lozano G. EWS-FLI1 induces developmental abnormalities and accelerates
                   sarcoma formation in a transgenic mouse model. Cancer Res 2008;68:8968-75.
               86.  Embree LJ, Azuma M, Hickstein DD. Ewing sarcoma fusion protein EWSR1/FLI1 interacts with EWSR1 leading to mitotic defects in
                   zebrafish embryos and human cell lines. Cancer Res 2009;69:4363-71.
               87.  Park H, Galbraith R, Turner T, Mehojah J, Azuma M. Loss of Ewing sarcoma EWS allele promotes tumorigenesis by inducing chromosomal
                   instability in zebrafish. Sci Rep 2016;6:32297.
               88.  Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, Van Loon JJ, Klein-Nulend J. Nitric oxide production by bone cells is fluid shear stress
                   rate dependent. Biochem Biophys Res Commun 2004;315:823-9.
               89.  Klein-Nulend J, Bacabac RG, Bakker AD. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in
                   maintaining our skeleton. Eur Cell Mater 2012;24:278-91.
               90.  Santoro M, Lamhamedi-Cherradi SE, Menegaz BA, Ludwig JA, Mikos AG. Flow perfusion effects on three-dimensional culture and drug
                   sensitivity of Ewing sarcoma. Proc Natl Acad Sci U S A 2015;112:10304-9.
               91.  Santoro M, Menegaz BA, Lamhamedi-Cherradi SE, Molina ER, Wu D, Priebe W, Ludwig JA, Mikos AG. Modeling stroma-induced drug
                   resistance in a tissue-engineered tumor model of Ewing sarcoma. Tissue Eng Part A 2017;23:80-9.
               92.  Marturano-Kruik A, Villasante A, Yaeger K, Ambati SR, Chramiec A, Raimondi MT, Vunjak-Novakovic G. Biomechanical regulation of
                   drug sensitivity in an engineered model of human tumor. Biomaterials 2018;150:150-61.
               93.  Scotlandi K, Benini S, Nanni P, Lollini PL, Nicoletti G, Landuzzi L, Serra M, Manara MC, Picci P, Baldini N. Blockage of insulin-like
                   growth factor-I receptor inhibits the growth of Ewing’s sarcoma in athymic mice. Cancer Res 1998;58:4127-31.
               94.  Vormoor J, Baersch G, Decker S, Hotfilder M, Schäfer KL, Pelken L, Rübe C, Van Valen F, Jürgens H, Dockhorn-Dworniczak B.
   19   20   21   22   23   24   25   26   27   28   29